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Abstract
This paper presents a detailed investigation into automated methods for auditing healthcare claims by leverag-
ing large-scale natural language processing pipelines that check for consistency and compliance across clinical
documentation and financial data. The primary focus is to harness advanced text processing models to identify
anomalies, verify adherence to medical billing standards, and detect potential fraud or misrepresentation in patient
claims. We discuss an integrative strategy that combines linguistic embeddings of clinical narratives, ontological
representations of medical coding rules, and algorithmic checks for insurance regulations to identify possible devia-
tions. A central concern is to ensure that the interpretability of computational models remains intact while handling
high-dimensional data spanning numerous claim types, patient histories, and regulatory frameworks. We provide
theoretical perspectives on how such models can be optimized and validated in practice, particularly in large insti-
tutions that process vast volumes of insurance claims daily. Our proposed approach relies on algorithmic detection
of semantic contradictions, symbolic logic checks for constraints, and computationally efficient transformations
of input data to handle variable lengths of clinical text. Experimental analyses demonstrate how this pipeline
can mitigate inconsistencies without introducing excessive computational overhead. By consolidating the latest
breakthroughs in automated text processing and healthcare compliance, this work contributes an interdisciplinary
perspective on accurate, transparent, and scalable auditing of medical claims.

1. Introduction

Healthcare systems worldwide manage a colossal volume of claims data containing diagnostic infor-
mation, procedures, billing codes, reimbursement amounts, and a variety of metadata reflecting patient
demographics [1]. The complexity of handling such data arises from the interplay between clinical
documentation, coding guidelines, and insurance reimbursement rules. In many jurisdictions, these
guidelines include standardized diagnostic codes, procedure codes, and regulations about covered
services [2]. Even minor inconsistencies can lead to improper payments, either by overbilling or under-
billing, and potentially expose institutions to legal or regulatory penalties. The scale of the problem can
be immense: large healthcare providers often process thousands of claims every day, adding up to mil-
lions annually [3]. Traditional manual auditing strategies, although thorough, remain time-consuming
and resource-intensive, necessitating automated solutions that can operate at scale.

Information derived from clinical text is often unstructured and full of domain-specific terminology,
making it challenging to detect anomalies in a consistent manner. At the same time, structured adminis-
trative data might reflect inconsistent or incomplete alignments with the details of the patient’s medical
record [4]. This inconsistency can yield false claims or fraudulent billing. In the broader context of
healthcare analytics, it is therefore critical to develop computational tools that recognize mismatches
between clinical narratives and billing structures [5]. Ideally, these tools can serve to flag suspicious
claims for further review.

By capitalizing on large-scale language models, an integrated strategy can be developed to classify
and compare medical documents, ensuring that billing claims map accurately to clinical notes. To
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achieve this, we can analyze textual segments such as physician notes, procedure descriptions, and
discharge summaries, and correlate them with administrative codes [6]. These codes often conform to
standards like ICD (International Classification of Diseases) or CPT (Current Procedural Terminology),
which are generally enumerated through systematic protocols. Claims for reimbursement must respect
numerous constraints, including the medical necessity of procedures, limits on the duration of patient
stays, and additional metadata such as patient comorbidities [7, 8]

One approach is to build a system that captures high-dimensional embeddings of clinical text. Let
𝑥𝑖 be a clinical text instance and let 𝑑 (𝑥𝑖) represent the corresponding diagnostic codes. We aim to
define a mapping 𝑓 (𝑥𝑖) from unstructured text to an embedding vector in R𝑘 that captures semantic
properties relevant to auditing. Using this embedding, we can attempt to detect inconsistencies through
distance-based similarity measures or through more specialized transformations [9]. To ensure compre-
hensiveness, we can incorporate domain-specific knowledge bases that encode regulatory requirements
as constraints. Symbolically, let Φ denote a set of compliance constraints, such that for each claim 𝑐 𝑗 ,
we want to verify whether [10]

∀𝑐 𝑗 ∈ 𝐶, (text(𝑐 𝑗 ), code(𝑐 𝑗 )) |= Φ,

where text(𝑐 𝑗 ) represents the textual portion of claim 𝑐 𝑗 and code(𝑐 𝑗 ) the billed codes. The expression
|= indicates whether the data adheres to the constraints in Φ. Any violation would yield a discrepancy
warranting further review.

In large health networks, where hundreds of thousands of patients are served, the sheer quantity of
claims necessitates a pipeline that can perform real-time or near real-time checks [11]. Natural Language
Processing (NLP) approaches frequently rely on neural architectures that process clinical text rapidly.
Such models may be complemented by non-neural strategies like pattern matching or rule-based filtering
to capture edge cases [12]. Often, these hybrid systems combine the interpretability of rule-based logic
with the adaptability of machine learning, providing a framework that can generalize to new claim types
while still grounding its decisions in transparent compliance checks.

Devising an accurate auditing system also involves advanced linear algebraic operations, particularly
for large-scale matrix representations of text embeddings. Suppose 𝑋 ∈ R𝑛×𝑘 is a matrix whose rows
correspond to embedding vectors of 𝑛 different claims, each embedded into a 𝑘-dimensional space. We
might apply transformations such as singular value decomposition (SVD) to reduce noise and highlight
dominant structures [13]. Specifically, if we write

𝑋 = 𝑈Σ𝑉T,

then projecting onto the top 𝑟 singular components, we get 𝑋𝑟 = 𝑈𝑟Σ𝑟𝑉
T
𝑟 , which may preserve key

compliance-relevant features while filtering out extraneous details. This projection can enhance the
efficiency and reliability of subsequent computations, such as nearest neighbor searches or cluster
analyses that try to identify unusual billing patterns or unexpected groupings of claims. [14]

Beyond embedding-based similarity, advanced techniques also leverage logic-based reasoning. Let
us consider a scenario in which a patient has a recorded procedure code 𝑝 𝑗 and a certain set of diagnosis
codes 𝑑 𝑗1, 𝑑 𝑗2, . . . , 𝑑 𝑗𝑚. We can represent the allowed relationships by a set of formulas such as

(∀𝑥 ∈ 𝐷)
(
𝑅(𝑥, 𝑝 𝑗 ) → 𝑄(𝑥, 𝑝 𝑗 )

)
, [15]

where 𝑅(𝑥, 𝑝 𝑗 ) denotes the semantic applicability of the procedure 𝑝 𝑗 to the diagnostic condition 𝑥,
and𝑄(𝑥, 𝑝 𝑗 ) encodes that the procedure is medically justified. Whenever a claim includes a pair (𝑑, 𝑝 𝑗 )
that does not satisfy 𝑄(𝑑, 𝑝 𝑗 ), an inconsistency is flagged. [16]

These multi-level checks extend beyond mere code matching. They encompass chronology, patient
demographics, drug interactions, and other clinical constraints. For instance, certain procedures might
only be valid if the patient is within a certain age range or has comorbidities that meet a specific threshold
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[17]. As a result, modeling such constraints might require capturing conditional statements like

(∃𝑦 ∈ {1, . . . , 𝑚}) condition(𝑦) ∧ eligible(𝑦) → approve(𝑝 𝑗 ).

Failure of such a statement for a given claim indicates a red flag [18]. The intricate interplay of
textual data, code data, and logical rules demands a robust pipeline that can unify all these components
seamlessly.

The remainder of this paper explores in detail the foundations of automated healthcare claims
auditing, the NLP strategies employed for large-scale analysis, mathematical frameworks for compliance
checking, a discussion of experimental observations, and real-world case studies that showcase the value
of these systems. We conclude with a reflection on how these approaches might evolve, emphasizing
the significance of interpretability and adaptability in rapidly changing healthcare environments. [19]

2. Foundations of Automated Healthcare Claims Auditing

Healthcare claims auditing has evolved considerably over the past few decades. Traditional auditing
typically proceeded by sampling a subset of claims, manually reviewing patient charts, cross-referencing
diagnostic and procedural codes, and verifying whether documentation supports the reimbursement
sought [20]. This methodology, although thorough, was vulnerable to human error and lack of scalability.
With exponential increases in claims volume and complexity, automated tools increasingly became a
necessity. [21]

One major impetus behind these tools is the standardization of billing systems. Organizations such
as the World Health Organization publish coding systems that health providers must adhere to, thereby
presenting a starting point for automated validations. In parallel, insurance companies and government
agencies have their own rules that go beyond the official code sets, adding a web of constraints that must
be reconciled [22]. Automated auditing solutions aim to bring these diverse constraints into a coherent
framework, enabling real-time or near real-time checks.

Core to these solutions is the representation of clinical data [23]. Consider a database of claims,
indexed by 𝑖 = 1, . . . , 𝑁 . For each claim 𝑖, we have textual fields capturing physician notes, structured
fields capturing ICD codes 𝑑𝑖 , procedure codes 𝑝𝑖 , and cost fields that detail financial breakdowns.
By combining textual embeddings with symbolic data, a system can generate a fused representation
[24]. Symbolically, let 𝐸𝑖 denote the fused embedding vector for claim 𝑖. Constructing 𝐸𝑖 might involve
concatenating or otherwise combining the textual embedding vector 𝑓 (𝑥𝑖) with a symbolic representation
𝑔(𝑑𝑖 , 𝑝𝑖), yielding [25]

𝐸𝑖 = ℎ
(
𝑓 (𝑥𝑖), 𝑔(𝑑𝑖 , 𝑝𝑖)

)
,

where ℎ(·, ·) is a learnable function, such as a feed-forward neural network or a more specialized
transformation.

Once these embeddings are obtained, subsequent auditing tasks can involve anomaly detection or
classification [26]. Suppose that 𝐸𝑖 ∈ R𝑘 for each claim 𝑖, and we define a distance metric 𝑑 (𝐸𝑖 , 𝐸 𝑗 ). If
there is a known set of compliance-approved claims {𝐸𝑎, 𝐸𝑏, . . . }, then for a new claim 𝐸𝑖 , we measure
its distance to the cluster formed by these approved claims. If 𝑑 (𝐸𝑖 , 𝐸𝑎) is above a threshold for all 𝑎 in
the reference set, we might suspect that 𝐸𝑖 reflects a novel claim type requiring further scrutiny. This
principle can be extended with more sophisticated manifold learning or graph-based methods, in which
relationships among claims are modeled as edges in a high-dimensional topology [27, 28].

An advantage of such embedding-based approaches is that they allow for the inclusion of textual
subtleties. For instance, if a clinical note indicates that a specific procedure was performed only as a
precautionary measure, but the bill includes an expensive version of the procedure typically not used for
precautionary contexts, an NLP-based system might detect that discrepancy by identifying the mismatch
in textual descriptors. Let desc(𝐸𝑖) be the textual descriptor embedded into the vector space. The system



Kern Public 33

can define constraints of the form [29]

mismatch(desc(𝐸𝑖), 𝑝𝑖) ≤ 𝛿,

where 𝛿 is a threshold for permissible semantic discrepancy. Exceeding this threshold indicates
noncompliance or at least the need for human review. [30]

Another important facet involves the concept of temporal logic. Many procedures or treatments must
follow a chronological sequence for coverage to be deemed valid. For example, a complex surgical
procedure might only be approved if certain preliminary interventions have been documented [31].
Representing this within an automated auditing framework might require a logic-based system that
tracks transitions over time. Let 𝑡𝑖 be the time associated with claim 𝑖, and let 𝜏 represent an interval
required before a particular procedure is covered [32]. A possible statement might be

(𝑡𝑖 − 𝑡 𝑗 ) ≥ 𝜏 ∧ prerequisite(𝑝 𝑗 , 𝑝𝑖) → covered(𝑝𝑖).

Such constraints must be systematically checked if the data exhibits a partial order of claims.
A final foundational element is reliability and validation of these automated systems [33]. Auditing

tools, while beneficial, must be subjected to continuous evaluation to ensure that they do not generate
excessive false positives or false negatives. This might take the form of cross-validation on historical
claims, measuring how often the system’s flags align with the findings of expert human auditors [34].
Over time, a feedback loop can refine the logic rules and machine learning models, ensuring that the
system adapts to new billing codes, changes in regulations, and shifts in clinical practice. This cyclical
pattern of improvement underpins the advanced data-driven auditing solutions that are increasingly
prevalent in large-scale healthcare organizations.

3. NLP Strategies for Large-Scale Analysis

Scaling healthcare claims auditing to massive datasets hinges on robust NLP methodologies that can
process large volumes of clinical text efficiently [35]. Such systems must accommodate the idiosyn-
crasies of medical language, including abbreviations, synonyms, variable phrasing across providers,
and specialized terminologies. Word-level embeddings, such as those derived from training on large
corpora of clinical text, often serve as the first layer of representation [36]. Let 𝑣𝑡 be the embedding for
token 𝑡, with 𝑣𝑡 ∈ R𝑑 . For a sequence of tokens 𝑡1, 𝑡2, . . . , 𝑡𝑙 , we may form a matrix 𝑉 ∈ R𝑙×𝑑 capturing
the entire sentence or paragraph. A deep neural model, often employing recurrent or transformer-based
architectures, then refines these embeddings into more context-aware representations.

Given the specialized vocabulary in healthcare, domain-specific embeddings typically outperform
generic embeddings. The intricacies of medical jargon may require additional steps in the pipeline,
such as dictionary lookups or concept mapping to recognized ontologies [37]. We can encode these
mappings as transformations 𝜓 that project token-level embeddings into a concept space, ensuring
uniform representation of synonyms and standard terms. Symbolically, [38]

𝜓(𝑣𝑡 ) = 𝑢 where 𝑢 ∈ U,

and U might represent a set of standardized medical concepts. These transformations help unify varied
expressions into consistent reference points, a crucial step for detecting mismatches.

The architecture for large-scale NLP-based claims analysis can be described as follows. We have a
massive corpus 𝐷 containing |𝐷 | documents [39]. Each document 𝑑 ∈ 𝐷 is associated with a textual
component capturing a clinical note or summary. We define a batch processing pipeline that segments
each note into sentences or smaller chunks to handle memory constraints [40]. A parallel distributed
framework can be leveraged to accelerate these computations. This might involve partitioning 𝐷 into
subsets𝐷1, 𝐷2, . . . , 𝐷𝑟 and processing each subset on different compute nodes, after which intermediate
results are aggregated. [41]
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At scale, the question arises of how to keep track of compliance logic while processing textual
features. One solution is to maintain a separate, rule-based module that operates on the outputs of the
NLP pipeline. For instance, if the pipeline produces a set of key medical terms 𝐾 (𝑑) for each document
𝑑, we can define a check function 𝛾(𝐾 (𝑑), 𝑝) to evaluate whether the presence or absence of certain
terms is consistent with the procedure code 𝑝 [42]. Concretely,

𝛾(𝐾 (𝑑), 𝑝) = [43]
{

1 if requiredTerms(𝑝) ⊆ 𝐾 (𝑑),
0 otherwise.

This check might look for terms that confirm the performance of a procedure. Failure of this check
indicates a possible inconsistency, prompting a more detailed review.

Language models trained on clinical data are not immune to challenges in interpretability and
generalizability [44]. On one hand, advanced architectures like transformers bring powerful contextual
understanding, capturing subtle relationships in the text. On the other, these models can overfit to training
data or misrepresent rare conditions [45]. Strategies such as regularization, dropout, or data augmentation
can mitigate overfitting. Meanwhile, interpretability might be supported via attention mechanisms or by
supplementing the pipeline with simpler rule-based checks that highlight questionable segments.

In terms of performance, we often need to measure two key metrics for large-scale NLP systems:
throughput and latency [46]. Throughput measures how many claims can be analyzed per unit time,
while latency captures the time required to process a single claim from ingestion to result. An auditing
system might need to process thousands of claims per minute [47]. Let 𝜆 be the throughput requirement,
measured in claims processed per second. If a single model instance can process 𝑏 claims per second,
then we would need approximately ⌈𝜆/𝑏⌉ parallel model instances to meet the throughput demand.
This horizontal scaling approach ensures that the volume of claims can be handled within practical
timeframes. [48]

A practical concern is the availability of large annotated datasets to train specialized medical NLP
models. Often, de-identified healthcare data is used, ensuring patient confidentiality [49]. However, data
sharing regulations such as HIPAA in the United States can constrain the availability of comprehen-
sive corpora. Collaborative initiatives sometimes pool data from multiple institutions, using federated
learning techniques to train models without sharing raw patient information. Let Δ be a global model
parameter set [50]. Local sites update Δ using their private data, and only share parameter gradi-
ents or updates, not raw text. This distributed approach enhances model generalization across diverse
populations, an important factor in achieving robust compliance checks. [51]

Ultimately, large-scale NLP strategies hinge on a blend of domain-specific representation, parallelized
computation, interpretability considerations, and synergy with rule-based frameworks. When assembled
properly, such strategies offer the speed and accuracy needed to identify potential billing discrepancies
in near real time, even across massive claim volumes.

4. Mathematical Formulation of Compliance Checking

Auditing healthcare claims for compliance can be cast as a collection of mathematical inference tasks
that unify text-based embeddings, logical constraints, and structured data [52]. We define a domain 𝑈
containing all possible claims, each of which is represented as a tuple (𝑇𝑖 , 𝐶𝑖 , 𝑀𝑖), where 𝑇𝑖 is the text,
𝐶𝑖 the coded information, and 𝑀𝑖 the metadata such as patient ID, provider ID, date, and cost. Let Ω be
the space of all possible states of knowledge relevant to the auditing process, including code definitions,
coverage rules, and historical claims data. [53]

Our objective is to assign a label 𝐿𝑖 to each claim 𝑖, where 𝐿𝑖 ∈
{compliant, noncompliant, undecided}. We can define a function

𝐹 : Ω ×𝑈 → {0, 1, 𝜖},
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where 𝐹 (Ω, (𝑇𝑖 , 𝐶𝑖 , 𝑀𝑖)) = 1 if the claim is deemed compliant, 0 if noncompliant, and 𝜖 if the decision
is deferred (requiring human review). Let 𝑝𝜃 (·) denote a parametric model that processes the textual
and coded components [54]. We consider:

𝑝𝜃 (𝐿𝑖 = 1 | 𝑇𝑖 , 𝐶𝑖) = 𝜎(𝛼(𝐸𝑖)), [55]

where 𝐸𝑖 is an embedding derived from (𝑇𝑖 , 𝐶𝑖), and 𝛼(·) is a learned scoring function that outputs a
real value. We then apply the logistic function 𝜎(·) to map that score to a probability of compliance. If
this probability is above a threshold 𝛽, the claim is flagged as compliant [56]. Otherwise, it is flagged
as either noncompliant or sent to the deferred category. Hence, [57]

𝐿𝑖 =


compliant, if 𝑝𝜃 (𝐿𝑖 = 1 | 𝑇𝑖 , 𝐶𝑖) ≥ 𝛽,

noncompliant, if 𝑝𝜃 (𝐿𝑖 = 1 | 𝑇𝑖 , 𝐶𝑖) ≤ 𝛾,
undecided, otherwise,

where 0 ≤ 𝛾 < 𝛽 ≤ 1. This approach allows for a region of uncertainty in which claims must be
examined by auditors.

Logic-based constraints can refine this probability [58]. Let Γ be a set of formulas representing
compliance rules, each formula 𝜑 ∈ Γ taking the form of a propositional or predicate logic statement
over the domain of claims. We define an indicator function 𝐼𝜑: [59]

𝐼𝜑 ((𝑇𝑖 , 𝐶𝑖 , 𝑀𝑖)) =
{

1, if (𝑇𝑖 , 𝐶𝑖 , 𝑀𝑖) |= 𝜑,
0, otherwise.

If 𝐼𝜑 = 0 for any rule 𝜑 ∈ Γ, that suggests a direct violation, potentially overriding the statistical model’s
probability [60]. This structure leads to a final integrated score:

𝑝final (𝐿𝑖 = 1) = 𝑝𝜃 (𝐿𝑖 = 1) ×
∏
𝜑∈Γ

[
𝜅
𝐼𝜑 ( (𝑇𝑖 ,𝐶𝑖 ,𝑀𝑖 ) )
𝜑

]
,

where 𝜅𝜑 is a scaling factor that accounts for how strongly the logic rule 𝜑 influences the compliance
decision. A violation of 𝜑 (i.e., 𝐼𝜑 = 0) can sharply reduce the overall compliance probability. [61]

An alternative viewpoint introduces an augmented space of latent variables 𝑧𝑖 that represent hidden
contextual factors. Let 𝑧𝑖 ∈ Z capture, for instance, the condition severity or the presence of certain
comorbidities not explicitly stated. We can define a joint distribution 𝑝𝜃 (𝐿𝑖 , 𝑧𝑖 | 𝑇𝑖 , 𝐶𝑖) and integrate
out the latent variables: [62]

𝑝𝜃 (𝐿𝑖 | 𝑇𝑖 , 𝐶𝑖) =
∫

𝑝𝜃 (𝐿𝑖 , 𝑧𝑖 | 𝑇𝑖 , 𝐶𝑖) 𝑑𝑧𝑖 .

In practice, sampling-based or variational methods approximate this integral. Logic constraints might
then place conditions on 𝑧𝑖 [63]. For example, if a rule states that a certain procedure requires comorbidity
𝑧∗
𝑖
, the system might enforce 𝑝𝜃 (𝑧∗𝑖 | 𝑇𝑖 , 𝐶𝑖) ≥ 𝛿 for coverage to be deemed appropriate.
A further refinement concerns interpretability [64]. Healthcare organizations often demand a clear

rationale for why a claim was approved or rejected. This can be encoded in a trace or proof object. Suppose
Π𝑖 is a proof structure documenting how 𝐹 arrived at 𝐿𝑖 [65]. We can defineΠ𝑖 as a sequence of inference
steps bridging from the textual and coded data to the final decision. Formally, Π𝑖 = ⟨𝜌1, 𝜌2, . . . , 𝜌𝑚⟩,
where each 𝜌 𝑗 is a justification referencing either a neural embedding or a logic rule application [66].
Ensuring that these justifications remain consistent is essential for compliance with legal and ethical
requirements.

Finally, practical systems use iterative feedback to update 𝜃 and refine Γ. Over time, repeated detection
of certain errors can highlight weaknesses in the model or gaps in the rule set [67]. Let Δ be an error
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metric, such as the proportion of claims that yield false positives. Minimizing Δ subject to correct
detection of actual fraud or errors can be formulated as an optimization problem: [68]

min
𝜃,Γ

Δ(𝑝𝜃 (·), Γ) subject to 𝑝𝜃 (·) |= Γ,

where 𝑝𝜃 (·) |= Γ indicates that the learned model respects the constraints set forth in Γ. This synergy
of neural models and logic-based constraints forms the mathematical backbone of modern, large-scale
compliance checking in healthcare claims auditing.

5. Experimental Observations and Results

Experimental investigations of automated healthcare claims auditing typically involve evaluating per-
formance metrics such as recall, precision, F1-score, and the rate of flagged claims requiring manual
reviews [69]. In multiple institutional settings, data spanning hundreds of thousands or even millions of
claims can be used. We can define a partition {Ttrain,Ttest} to train the model on historical claims and
test it on a separate set. The test set might be enriched with artificially corrupted claims to ensure that
various kinds of fraud or errors are examined. [70]

In one representative experiment, let 𝑁 = 500,000 be the total number of claims in Ttrain and 𝑀 =

100,000 be the number of claims inTtest. We first train a neural NLP model to generate textual embeddings
𝑓 (𝑥𝑖) for the clinical text portion 𝑥𝑖 of each claim. We define 𝑝𝜃 (noncompliant | 𝑥𝑖 , 𝑑𝑖), where 𝑑𝑖 is
the set of diagnostic and procedure codes. A logistic regression head built atop these embeddings
can produce a continuous compliance risk score. Meanwhile, a rule-based engine incorporating logic
constraints Γ is employed to override or adjust these scores whenever a known violation is present. [71]

Performance metrics can be reported as follows. Let TP, FP, TN, and FN denote the counts of true
positives, false positives, true negatives, and false negatives for noncompliant claims [72]. Define:

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 , Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 , 𝐹1 = 2 × Precision × Recall
Precision + Recall

.

Empirical results often show that the combination of NLP-based embeddings and logic-based constraints
yields a higher F1 score than purely rule-based or purely machine learning-based approaches. For
example, the integrated system might achieve an F1 score of 0.90, compared to 0.82 for a purely machine
learning approach and 0.78 for a purely rule-based approach [73]. This suggests that synergy between
data-driven embeddings and explicit domain knowledge can increase accuracy in detecting erroneous
or fraudulent claims.

Another critical variable is the false positive rate (FPR), which can overwhelm human auditors if too
high [74]. In many practical experiments, a small increase in FPR is sometimes deemed acceptable in
exchange for capturing more true fraud cases (i.e., improving recall). A common operational approach
is to maintain separate thresholds for recall and precision. If claims are numerous and the cost of an
undetected error is substantial, healthcare organizations may tolerate a higher FPR to minimize false
negatives. [75]

Latency and throughput experiments also illustrate system performance. Suppose that each claim
must be processed within a few seconds to maintain overall operational efficiency [76]. In a high-
throughput environment, parallelization is crucial. Let 𝑘 be the number of GPUs or compute nodes. If
the system processes 𝑟 claims per second on a single node, then ideally we can scale to 𝑘 × 𝑟 claims per
second in a nearly linear fashion [77]. Real-world constraints such as communication overhead or load
balancing can impose sub-linear scaling, but well-designed systems can still handle tens of thousands
of claims per minute.

An illustrative scenario can be considered where a parallel cluster is configured with 𝑘 = 50 nodes,
each able to process 𝑟 = 200 claims per second [78]. The theoretical maximum throughput is 10,000
claims per second, or 600,000 claims per minute. In practice, network overhead might reduce effective



Kern Public 37

throughput to about 500,000 claims per minute. Given that a large institution might handle a few million
claims per month, a single pass over the entire dataset can be completed in a matter of minutes or hours,
rather than days.

The interpretability of flagged cases also plays an important role in acceptance of the system [79].
Clinical coders and auditors require traceable explanations, which might involve referencing specific
textual snippets and relevant logic constraints. For instance, in a claim flagged due to an apparent
mismatch between the described symptoms and the billed procedure, the system may highlight a portion
of the clinical note that references mild discomfort while the code is for a more invasive and expensive
intervention. This explanation helps coders verify whether the note was incomplete or the charge was
incorrect. [80]

In sum, experimental evaluations consistently show that large-scale NLP-based consistency and
compliance checks can detect anomalies and ensure correct billing to a degree that is unfeasible through
manual audits alone. The synergy of advanced text embeddings, domain-specific logic constraints, and
robust computing infrastructures results in a potent toolset for reducing systemic errors and fraud in
healthcare claim submissions. [81]

6. Case Studies

In practice, automated claims auditing has been applied in a variety of contexts to address different types
of inconsistencies. One notable example involves an institution dealing with a sudden surge in outpatient
procedures for a specialized diagnostic test. By implementing an NLP-based pipeline integrated with
logic constraints, the institution discovered that several claims included the specialized diagnostic test
code without a corresponding indication in the clinical notes to justify its necessity [82]. The system
flagged those claims by detecting the absence of keywords or concepts typically found in the notes for
patients requiring that test. Upon manual investigation, auditors traced the anomaly to a new coding
practice at certain clinics [83]. The institution provided targeted training to the coders, significantly
reducing the error rate over the following months.

Another case study focuses on a large national insurer employing a high-throughput auditing system
that receives streams of claims from various providers. The insurer’s system relies on a distributed set of
NLP models, each trained on specialized subsets of clinical text [84]. For instance, one model focuses
on orthopedic procedures, another on cardiovascular treatments, and another on mental health services.
Claims are routed to the appropriate model based on the primary ICD code [85]. This approach ensures
domain expertise in embeddings and logic constraints, thus achieving improved accuracy. By analyzing
flagged claims, the insurer uncovered patterns of overbilling in physical therapy sessions, where certain
providers consistently appended procedure codes indicating additional complexity or extended duration,
but the textual documentation did not reflect those complexities. In a formal sense, the rule-based engine
found repeated violation of statements like [86]

(complexProcedure(𝑝) → evidenceInText(𝑥𝑖)),

which was not satisfied in the flagged claims. With the enforcement of stricter documentation protocols,
the insurer reduced these suspicious claims substantially. [87]

In a third scenario, a statewide audit authority attempted to detect fraudulent claims submitted to
public insurance programs. The authority combined a large-scale textual database of patient encoun-
ters with a suite of logical rules derived from government regulations. The text data included progress
notes, nurse logs, laboratory results, and additional clinical documents [88]. Through advanced matrix
factorization methods, such as factorizing a huge claims-by-terms matrix into lower-dimensional repre-
sentations, the authority managed to isolate clusters of claims with atypical term distributions. Further
inspection revealed that some clinics repetitively used template-based narratives that were inconsistent
with actual patient conditions, thus potentially billing for services that were not truly performed [89].
The authority’s final compliance check used an integrated logic system that matched typical patterns of
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care to expected times and intervals. Violations of those patterns indicated possible fraudulent activity.
Legal proceedings resulted in significant recoveries of funds. [90]

These case studies highlight how large-scale NLP-based auditing frameworks, enriched with
advanced mathematical and logical principles, can detect anomalies that might otherwise escape man-
ual review. The synergy between textual data, structured codes, and external regulatory rules is crucial
for capturing the full context of each claim [91]. Institutions that employ these tools also benefit from
ongoing refinements in machine learning architectures, logic engines, and distributed computing capa-
bilities, all of which ensure the solutions can adapt to evolving clinical practices. Such adaptability
is essential in healthcare, where both the standards of care and the regulatory environment can shift
rapidly, requiring constant updates to the auditing framework.

7. Conclusion

Advanced automated auditing of healthcare claims through large-scale NLP-based consistency and
compliance checks offers an effective strategy for enhancing the accuracy and transparency of billing
practices [92]. By employing textual embeddings that capture nuanced clinical information, and coupling
them with logic-based constraints, the system can detect discrepancies or anomalies that purely manual
or purely machine-driven methods might miss. The mathematical foundation merges neural modeling
with formal rules, enabling a robust representation of both linguistic subtleties and domain-specific
compliance requirements [93, 94]. Empirical results demonstrate the effectiveness of these hybrid
approaches, showing improvements in recall, precision, and interpretability. In real-world settings,
these systems have flagged systematic coding errors, uncovered fraudulent patterns, and streamlined the
auditing process, underscoring the value of scalable, data-driven solutions.

While current frameworks have reached a high level of sophistication, further developments will
likely focus on expanding the scope of integration among unstructured clinical text, structured billing
data, and emerging healthcare standards [95]. Another active area of research involves improving model
interpretability to satisfy the needs of clinical coders, auditors, and regulators who must understand
how decisions are reached. Federated learning stands out as a strategy for preserving privacy while
aggregating knowledge across multiple institutions [96]. Continuous updates to the logic rule sets
remain vital as billing codes and regulations evolve, requiring agile systems that can adapt with minimal
disruption. As the healthcare landscape continues to shift, the underlying methodologies described here
can serve as a blueprint for harnessing advances in language modeling, machine reasoning, and high-
performance computing to deliver more trustworthy and efficient auditing. The synergistic combination
of domain expertise, formal constraints, and large-scale computational power will likely define the future
of automated claims auditing in healthcare. [97]

References
[1] T. Cai, T.-C. Lin, A. Bond, J. Huang, G. Kane-Wanger, A. Cagan, S. N. Murphy, A. N. Ananthakrishnan, and K. P. Liao,

“The association between arthralgia and vedolizumab using natural language processing.,” Inflammatory bowel diseases,
vol. 24, pp. 2242–2246, 5 2018.

[2] V. J. Zhu, L. A. Lenert, K. S. Barth, K. N. Simpson, H. Li, M. Kopscik, and K. T. Brady, “Automatically identifying opioid use
disorder in non-cancer patients on chronic opioid therapy.,” Health informatics journal, vol. 28, pp. 14604582221107808–,
6 2022.

[3] A. Lavin, C. M. Gilligan-Lee, A. Visnjic, S. Ganju, D. Newman, S. Ganguly, D. Lange, A. G. Baydin, A. Sharma, A. Gibson,
S. Zheng, E. P. Xing, C. Mattmann, J. Parr, and Y. Gal, “Technology readiness levels for machine learning systems.,” Nature
communications, vol. 13, pp. 6039–, 10 2022.

[4] M. Muniswamaiah, T. Agerwala, and C. Tappert, “Big data in cloud computing review and opportunities,” arXiv preprint
arXiv:1912.10821, 2019.

[5] M. Abouelyazid and C. Xiang, “Machine learning-assisted approach for fetal health status prediction using cardiotocogram
data,” International Journal of Applied Health Care Analytics, vol. 6, no. 4, pp. 1–22, 2021.



Kern Public 39

[6] A. K. Saxena, “Evaluating the regulatory and policy recommendations for promoting information diversity in the digital
age,” International Journal of Responsible Artificial Intelligence, vol. 11, no. 8, pp. 33–42, 2021.

[7] B. Foreman, “Neurocritical care: Bench to bedside (eds. claude hemphill, michael james) integrating and using big data in
neurocritical care,” Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, vol. 17,
no. 2, pp. 593–605, 2020.

[8] J. R. Machireddy, “Automation in healthcare claims processing: Enhancing efficiency and accuracy,” International Journal
of Science and Research Archive, vol. 09, no. 01, pp. 825–834, 2023.

[9] W. Liang, G. A. Tadesse, D. Ho, L. Fei-Fei, M. Zaharia, C. Zhang, and J. Zou, “Advances, challenges and opportunities in
creating data for trustworthy ai,” Nature Machine Intelligence, vol. 4, pp. 669–677, 8 2022.

[10] N. Viani, T. A. Miller, C. Napolitano, S. G. Priori, G. Savova, R. Bellazzi, and L. Sacchi, “Supervised methods to extract
clinical events from cardiology reports in italian.,” Journal of biomedical informatics, vol. 95, pp. 103219–103219, 5 2019.

[11] R. Agarwal, M. Dugas, G. Gao, and P. Kannan, “Emerging technologies and analytics for a new era of value-centered
marketing in healthcare,” Journal of the Academy of Marketing Science, vol. 48, pp. 9–23, 10 2019.

[12] A. Mitra, H. Ahsan, W. Li, W. Liu, R. D. Kerns, J. Tsai, W. C. Becker, D. A. Smelson, and H. Yu, “Risk factors associated
with nonfatal opioid overdose leading to intensive care unit admission: A cross-sectional study.,” JMIR medical informatics,
vol. 9, pp. e32851–, 11 2021.

[13] X. Yang, A. Chen, N. PourNejatian, H. C. Shin, K. E. Smith, C. Parisien, C. Compas, C. Martin, A. B. Costa, M. G. Flores,
Y. Zhang, T. Magoc, C. A. Harle, G. Lipori, D. A. Mitchell, W. R. Hogan, E. A. Shenkman, J. Bian, and Y. Wu, “A large
language model for electronic health records.,” NPJ digital medicine, vol. 5, pp. 194–, 12 2022.

[14] E. Marshall, M. A. Moon, A. Mirchandani, D. G. Smith, L. P. Nichols, X. Zhao, V. G. V. Vydiswaran, and T. Chang, “"baby
wants tacos": Analysis of health-related facebook posts from young pregnant women.,” Maternal and child health journal,
vol. 23, pp. 1400–1413, 6 2019.

[15] A. Carbone, A. Gloghini, D. Aldinucci, V. Gattei, R. Dalla-Favera, and G. Gaidano, “Expression pattern of mum1/irf4 in
the spectrum of pathology of hodgkin’s disease,” British journal of haematology, vol. 117, pp. 366–372, 4 2002.

[16] A. Venkatakrishnan, C. Pawlowski, D. Zemmour, T. K. Hughes, A. Anand, G. Berner, N. Kayal, A. Puranik, I. Conrad,
S. Bade, R. Barve, P. Sinha, J. C. O’Horo, A. D. Badley, J. Halamka, and V. Soundararajan, “Mapping each pre-existing
condition’s association to short-term and long-term covid-19 complications,” NPJ digital medicine, vol. 4, pp. 117–117, 7
2021.

[17] C. V. Schneider, T. Li, D. Zhang, A. I. Mezina, P. Rattan, H. Huang, K. T. Creasy, E. Scorletti, I. Zandvakili, M. Vujkovic,
L. Hehl, J. Fiksel, J. Park, K. Wangensteen, M. Risman, K.-M. Chang, M. Serper, R. M. Carr, K. M. Schneider,
J. Chen, and D. J. Rader, “Large-scale identification of undiagnosed hepatic steatosis using natural language processing.,”
EClinicalMedicine, vol. 62, pp. 102149–102149, 8 2023.

[18] J. C. Young, M. M. Conover, and M. J. Funk, “Measurement error and misclassification in electronic medical records:
Methods to mitigate bias,” Current epidemiology reports, vol. 5, pp. 343–356, 9 2018.

[19] A. E. Radix, K. Bond, P. B. Carneiro, and A. Restar, “Transgender individuals and digital health.,” Current HIV/AIDS
reports, vol. 19, pp. 592–599, 9 2022.

[20] R. Avula, “Applications of bayesian statistics in healthcare for improving predictive modeling, decision-making, and adaptive
personalized medicine,” International Journal of Applied Health Care Analytics, vol. 7, no. 11, pp. 29–43, 2022.

[21] H. Algahtani, Y. Buraik, and Y. Ad-Dab’bagh, “Psychotherapy in saudi arabia: Its history and cultural context,” Journal of
Contemporary Psychotherapy, vol. 47, pp. 105–117, 11 2016.

[22] R. Avula, “Strategies for minimizing delays and enhancing workflow efficiency by managing data dependencies in healthcare
pipelines,” Eigenpub Review of Science and Technology, vol. 4, no. 1, pp. 38–57, 2020.

[23] T. Watari, S. Takagi, K. Sakaguchi, Y. Nishizaki, T. Shimizu, Y. Yamamoto, and Y. Tokuda, “Performance comparison
of chatgpt-4 and japanese medical residents in the general medicine in-training examination: Comparison study.,” JMIR
medical education, vol. 9, pp. e52202–e52202, 12 2023.

[24] K.-H. Liu, Y. Niu, M. Konishi, Y. Wu, H. Du, H. S. Chung, L. Li, M. Boudsocq, M. McCormack, S. Maekawa, T. Ishida,
C. Zhang, K. M. Shokat, S. Yanagisawa, and J. Sheen, “Discovery of nitrate–cpk–nlp signalling in central nutrient–growth
networks,” Nature, vol. 545, pp. 311–316, 5 2017.



40 Kern Public

[25] H. S. Chase, L. R. Mitrani, G. Lu, and D. J. Fulgieri, “Early recognition of multiple sclerosis using natural language
processing of the electronic health record,” BMC medical informatics and decision making, vol. 17, pp. 24–24, 2 2017.

[26] T. D. Imler, J. Morea, C. J. Kahi, J. Cardwell, C. S. Johnson, H. Xu, D. J. Ahnen, F. Antaki, C. Ashley, G. Baffy, I. Cho, J. A.
Dominitz, J. K. Hou, M. A. Korsten, A. B. Nagar, K. Promrat, D. J. Robertson, S. D. Saini, A. K. Shergill, W. E. Smalley,
and T. F. Imperiale, “Multi-center colonoscopy quality measurement utilizing natural language processing,” The American
journal of gastroenterology, vol. 110, pp. 543–552, 3 2015.

[27] P. Lakhani, W. Kim, and C. P. Langlotz, “Automated detection of critical results in radiology reports,” Journal of digital
imaging, vol. 25, pp. 30–36, 10 2011.

[28] M. Yuan and A. Vlachos, “Zero-shot fact-checking with semantic triples and knowledge graphs,” in Proceedings of the 1st
Workshop on Knowledge Graphs and Large Language Models (KaLLM 2024), pp. 105–115, 2024.

[29] K. A. Schmidt, D. D. Penrice, and D. A. Simonetto, “Artificial intelligence in the assessment and management of nutrition
and metabolism in liver disease,” Current Hepatology Reports, vol. 21, pp. 120–130, 10 2022.

[30] A. Sarker, M. A. Al-Garadi, Y. Ge, N. Nataraj, C. M. Jones, and S. A. Sumner, “Signals of increasing co-use of stimulants
and opioids from online drug forum data.,” Harm reduction journal, vol. 19, pp. 51–, 5 2022.

[31] V. M. Pai, M. M. Rodgers, R. S. Conroy, J. Luo, R. Zhou, and B. Seto, “Workshop on using natural language processing
applications for enhancing clinical decision making: an executive summary,” Journal of the American Medical Informatics
Association : JAMIA, vol. 21, pp. 5–5, 8 2013.

[32] B. Connolly, P. Matykiewicz, K. B. Cohen, S. M. Standridge, T. A. Glauser, D. J. Dlugos, S. Koh, E. Tham, and J. Pestian,
“Assessing the similarity of surface linguistic features related to epilepsy across pediatric hospitals,” Journal of the American
Medical Informatics Association : JAMIA, vol. 21, pp. 866–870, 4 2014.

[33] S. Liu, A. B. McCoy, M. C. Aldrich, K. L. Sandler, T. J. Reese, B. Steitz, J. Bian, Y. Wu, E. Russo, and A. Wright,
“Leveraging natural language processing to identify eligible lung cancer screening patients with the electronic health
record.,” International journal of medical informatics, vol. 177, pp. 105136–105136, 6 2023.

[34] J. M. Nobel, S. Puts, J. Weiss, H. J. Aerts, R. H. Mak, S. G. F. Robben, and A. Dekker, “T-staging pulmonary oncology from
radiological reports using natural language processing: translating into a multi-language setting.,” Insights into imaging,
vol. 12, pp. 77–77, 6 2021.

[35] C. L. Sistrom, “Conceptual approach for the design of radiology reporting interfaces: the talking template.,” Journal of
digital imaging, vol. 18, pp. 176–187, 6 2005.

[36] J. Yu, J. A. Pacheco, A. S. Ghosh, Y. Luo, C. Weng, N. Shang, B. Benoit, D. S. Carrell, R. J. Carroll, O. Dikilitas, R. R.
Freimuth, V. S. Gainer, H. Hakonarson, G. Hripcsak, I. J. Kullo, F. Mentch, S. N. Murphy, P. L. Peissig, A. H. Ramirez,
N. Walton, W.-Q. Wei, and L. V. Rasmussen, “Under-specification as the source of ambiguity and vagueness in narrative
phenotype algorithm definitions.,” BMC medical informatics and decision making, vol. 22, pp. 23–, 1 2022.

[37] S. Dash, S. K. Shakyawar, M. Sharma, and S. Kaushik, “Big data in healthcare: management, analysis and future prospects,”
Journal of Big Data, vol. 6, pp. 1–25, 6 2019.

[38] F. Tettey, S. K. Parupelli, and S. Desai, “A review of biomedical devices: Classification, regulatory guidelines, human
factors, software as a medical device, and cybersecurity,” Biomedical Materials & Devices, vol. 2, pp. 316–341, 8 2023.

[39] A. P. Fadol, A. Patel, V. Shelton, K. Krause, E. Bruera, and N. Palaskas, “Palliative care referral criteria and outcomes in
cancer and heart failure: a systematic review of literature,” Cardio-oncology (London, England), vol. 7, pp. 32–32, 9 2021.

[40] R. W. Grout, S. L. Hui, T. D. Imler, S. A. El-Azab, J. Baker, S. G. Harry, M. Ateya, and F. Pike, “Development, validation,
and proof-of-concept implementation of a two-year risk prediction model for undiagnosed atrial fibrillation using common
electronic health data (unafied).,” BMC medical informatics and decision making, vol. 21, pp. 112–112, 4 2021.

[41] J. Hong, A. Davoudi, S. Yu, and D. L. Mowery, “Annotation and extraction of age and temporally-related events from clinical
histories,” BMC medical informatics and decision making, vol. 20, pp. 1–15, 12 2020.

[42] J. F. Ludvigsson, J. Pathak, S. P. Murphy, M. J. Durski, P. S. Kirsch, C. G. Chute, E. Ryu, and J. A. Murray, “Use of
computerized algorithm to identify individuals in need of testing for celiac disease,” Journal of the American Medical
Informatics Association : JAMIA, vol. 20, pp. e306–10, 8 2013.



Kern Public 41

[43] A. Sharma and K. D. Forbus, “Modeling the evolution of knowledge and reasoning in learning systems,” in 2010 AAAI Fall
Symposium Series, 2010.

[44] E. A. Mendonça, J. P. Haas, L. Shagina, E. Larson, and C. Friedman, “Extracting information on pneumonia in infants using
natural language processing of radiology reports,” Journal of biomedical informatics, vol. 38, pp. 314–321, 3 2005.

[45] A. N. Kho, L. V. Rasmussen, J. J. Connolly, P. L. Peissig, J. Starren, H. Hakonarson, and M. G. Hayes, “Practical challenges
in integrating genomic data into the electronic health record.,” Genetics in medicine : official journal of the American College
of Medical Genetics, vol. 15, pp. 772–778, 9 2013.

[46] C. Weng, C. Friedman, C. Rommel, and J. F. Hurdle, “A two-site survey of medical center personnel’s willingness to share
clinical data for research: implications for reproducible health nlp research.,” BMC medical informatics and decision making,
vol. 19, pp. 5–12, 4 2019.

[47] M. Muniswamaiah, T. Agerwala, and C. C. Tappert, “Automatic visual recommendation for data science and analytics,”
in Advances in Information and Communication: Proceedings of the 2020 Future of Information and Communication
Conference (FICC), Volume 2, pp. 125–132, Springer, 2020.

[48] M. L. Jones, S. L. DuVall, J. Spuhl, M. H. Samore, C. Nielson, and M. Rubin, “Identification of methicillin-resistant
staphylococcus aureus within the nation’s veterans affairs medical centers using natural language processing,” BMC medical
informatics and decision making, vol. 12, pp. 34–34, 7 2012.

[49] Y. Jin, F. Li, V. G. Vimalananda, and H. Yu, “Automatic detection of hypoglycemic events from the electronic health record
notes of diabetes patients: Empirical study,” JMIR medical informatics, vol. 7, pp. e14340–, 11 2019.

[50] T. Zheng, Y. Gao, F. Wang, C. Fan, X. Fu, M. Li, Y. Zhang, S. Zhang, and H. Ma, “Detection of medical text semantic
similarity based on convolutional neural network,” BMC medical informatics and decision making, vol. 19, pp. 1–11, 8 2019.

[51] R. Avula, “Optimizing data quality in electronic medical records: Addressing fragmentation, inconsistencies, and data
integrity issues in healthcare,” Journal of Big-Data Analytics and Cloud Computing, vol. 4, no. 5, pp. 1–25, 2019.

[52] J. L. Hornick, R. K. Yantiss, L. W. Lamps, C. Subcommittee, S. D. Billings, R. R. Seethala, I. Weinreb, D. Kaminsky,
Z. Baloch, D. J. Brat, A. Cimino-Mathews, J. R. Cook, S. Dry, W. C. Faquin, Y. Fedoriw, K. Fritchie, L. Priya, K. Anna,
M. Mulligan, R. K. Pai, D. Papke, V. Parkash, C. Parra-Herran, A. V. Parwani, S. Abu-Farsakh, A. Phelan, M. K. Eldomery,
S. Zhang, M. Czader, I. Abukhiran, C. Holman, S. Syrbu, A. Ahmed, D. X. Nguyen, M. L. Xu, F. S. Ahmed, Y. Ji, P. Li,
K. Fu, G. Yu, H. Cheng, D. L. Rimm, Z. Pan, A. Akhter, G. Elyamany, R. Elgamal, M. Shabani-Rad, and A. Mansoor,
“Abstracts from uscap 2020: Hematopathology (1316-1502).,” Modern pathology : an official journal of the United States
and Canadian Academy of Pathology, Inc, vol. 33, no. Suppl 2, pp. 1409–1586, 2020.

[53] J. Pettus, R. Roussel, F. L. Zhou, Z. Bosnyak, J. Westerbacka, R. Berria, J. Jimenez, B. Eliasson, I. Hramiak, T. S. Bailey,
and L. F. Meneghini, “Rates of hypoglycemia predicted in patients with type 2 diabetes on insulin glargine 300 u/ml versus
first- and second-generation basal insulin analogs: The real-world lightning study,” Diabetes therapy : research, treatment
and education of diabetes and related disorders, vol. 10, pp. 617–633, 2 2019.

[54] Z. S. Dong, L. Meng, L. Christenson, and L. V. Fulton, “Social media information sharing for natural disaster response,”
Natural Hazards, vol. 107, pp. 2077–2104, 2 2021.

[55] F. Nehme and K. Feldman, “Evolving role and future directions of natural language processing in gastroenterology.,”
Digestive diseases and sciences, vol. 66, pp. 29–40, 2 2020.

[56] A. Sharma, Structural and network-based methods for knowledge-based systems. PhD thesis, Northwestern University, 2011.

[57] A. Sharma, M. Witbrock, and K. Goolsbey, “Controlling search in very large commonsense knowledge bases: a machine
learning approach,” arXiv preprint arXiv:1603.04402, 2016.

[58] C. Peng, X. Yang, A. Chen, K. E. Smith, N. PourNejatian, A. B. Costa, C. Martin, M. G. Flores, Y. Zhang, T. Magoc,
G. Lipori, D. A. Mitchell, N. S. Ospina, M. M. Ahmed, W. R. Hogan, E. A. Shenkman, Y. Guo, J. Bian, and Y. Wu, “A study
of generative large language model for medical research and healthcare.,” NPJ digital medicine, vol. 6, pp. 210–, 11 2023.

[59] J. Li, H. J. Wang, and X. Bai, “An intelligent approach to data extraction and task identification for process mining,”
Information Systems Frontiers, vol. 17, pp. 1195–1208, 6 2015.

[60] J. Ye, L. Yao, J. Shen, R. Janarthanam, and Y. Luo, “Predicting mortality in critically ill patients with diabetes using machine
learning and clinical notes.,” BMC medical informatics and decision making, vol. 20, pp. 295–295, 12 2020.



42 Kern Public

[61] A. Mitra, R. Pradhan, R. D. Melamed, K. Chen, D. C. Hoaglin, K. L. Tucker, J. I. Reisman, Z. Yang, W. Liu, J. Tsai, and
H. Yu, “Associations between natural language processing-enriched social determinants of health and suicide death among
us veterans.,” JAMA network open, vol. 6, pp. e233079–e233079, 3 2023.

[62] S. Golder, D. Weissenbacher, K. O’Connor, S. Hennessy, R. Gross, and G. G. Hernandez, “Patient-reported reasons for
switching or discontinuing statin therapy: A mixed methods study using social media.,” Drug safety, vol. 45, pp. 971–981,
8 2022.

[63] P. Mäder, R. Olivetto, and A. Marcus, “Empirical studies in software and systems traceability,” Empirical Software
Engineering, vol. 22, pp. 963–966, 3 2017.

[64] M. J. Owen, S. Lefebvre, C. Hansen, C. M. Kunard, D. P. Dimmock, L. D. Smith, G. Scharer, R. Mardach, M. J. Willis,
A. Feigenbaum, A.-K. Niemi, Y. Ding, L. V. D. Kraan, K. Ellsworth, L. Guidugli, B. R. Lajoie, T. K. McPhail, S. S. Mehtalia,
K. K. Chau, Y. H. Kwon, Z. Zhu, S. Batalov, S. Chowdhury, S. Rego, J. Perry, M. Speziale, M. Nespeca, M. S. Wright, M. G.
Reese, F. M. D. L. Vega, J. Azure, E. Frise, C. S. Rigby, S. White, C. A. Hobbs, S. Gilmer, G. Knight, A. Oriol, J. Lenberg,
S. A. Nahas, K. Perofsky, K. Kim, J. Carroll, N. G. Coufal, E. Sanford, K. Wigby, J. Weir, V. S. Thomson, L. Fraser, S. S.
Lazare, Y. H. Shin, H. Grunenwald, R. Lee, D. Jones, D. Tran, A. Gross, P. Daigle, A. Case, M. Lue, J. A. Richardson,
J. Reynders, T. Defay, K. P. Hall, N. Veeraraghavan, and S. F. Kingsmore, “An automated 13.5hour system for scalable
diagnosis and acute management guidance for genetic diseases.,” Nature communications, vol. 13, pp. 4057–, 7 2022.

[65] A. Hohl, M. Choi, R. Medina, N. Wan, and M. Wen, “Covid-19: adverse population sentiment and place-based associations
with socioeconomic and demographic factors,” Spatial Information Research, vol. 32, pp. 73–84, 8 2023.

[66] H. Sampathkumar, X. wen Chen, and B. Luo, “Mining adverse drug reactions from online healthcare forums using hidden
markov model.,” BMC medical informatics and decision making, vol. 14, pp. 91–91, 10 2014.

[67] A. Galoosian, J. O. Yang, E. Peterson, C. K. Maehara, J. Badiee, C. Soroudi, A. Myint, Y. Kang, B. V. Naini, S. D. Silva,
V. R. Muthusamy, E. Esrailian, W. Hsu, and F. P. May, “S285validation of a deep machine learning tool to determine intra-
procedural screening colonoscopy quality indicators in an academic health system,” American Journal of Gastroenterology,
vol. 117, no. 10S, pp. e204–e205, 2022.

[68] P. Maurya, O. Jafari, B. Thatte, C. Ingram, and P. Nagarkar, “Building a comprehensive ner model for satellite domain,” SN
Computer Science, vol. 3, 3 2022.

[69] N. Zhou, Q. Wu, Z. Wu, S. Marino, and I. D. Dinov, “Datasiftertext: Partially synthetic text generation for sensitive clinical
notes.,” Journal of medical systems, vol. 46, pp. 96–, 11 2022.

[70] M. Chang, M. Chang, J. Z. Reed, D. Milward, J. J. Xu, and W. D. Cornell, “Developing timely insights into comparative
effectiveness research with a text-mining pipeline.,” Drug discovery today, vol. 21, pp. 473–480, 2 2016.

[71] R. F. Hanson, V. Zhu, F. Are, H. Espeleta, E. Wallis, P. Heider, M. Kautz, and L. Lenert, “Initial development of tools
to identify child abuse and neglect in pediatric primary care.,” BMC medical informatics and decision making, vol. 23,
pp. 266–, 11 2023.

[72] J. Wu, F. Morrison, Z. Zhao, G. Haynes, X. He, A. K. Ali, M. Shubina, S. Malmasi, W. Ge, X. Peng, and A. Turchin,
“Reasons for discontinuing insulin and factors associated with insulin discontinuation in patients with type 2 diabetes
mellitus: a real-world evidence study,” Clinical diabetes and endocrinology, vol. 7, pp. 1–10, 1 2021.

[73] M. A. Badgeley, J. R. Zech, L. Oakden-Rayner, B. S. Glicksberg, M. Liu, W. Gale, M. V. McConnell, B. Percha, T. M.
Snyder, and J. T. Dudley, “Deep learning predicts hip fracture using confounding patient and healthcare variables,” NPJ
digital medicine, vol. 2, pp. 1–10, 4 2019.

[74] M. A. Gianfrancesco and N. D. Goldstein, “A narrative review on the validity of electronic health record-based research in
epidemiology.,” BMC medical research methodology, vol. 21, pp. 234–234, 10 2021.

[75] L. A. Bastian, C. Brandt, and A. C. Justice, “Measuring multimorbidity: A risky business.,” Journal of general internal
medicine, vol. 32, pp. 959–960, 6 2017.

[76] J. Koola, S. E. Davis, O. Al-Nimri, S. K. Parr, D. Fabbri, B. A. Malin, S. B. Ho, and M. E. Matheny, “Development of an
automated phenotyping algorithm for hepatorenal syndrome.,” Journal of biomedical informatics, vol. 80, pp. 87–95, 3 2018.

[77] B. Shickel and A. Bihorac, “The dawn of multimodal artificial intelligence in nephrology.,” Nature reviews. Nephrology,
vol. 20, pp. 79–80, 12 2023.



Kern Public 43

[78] C. Xiang and M. Abouelyazid, “The impact of generational cohorts and visit environment on telemedicine satisfaction: A
novel investigation,” 2020.

[79] D. G. Gordon and T. D. Breaux, “A cross-domain empirical study and legal evaluation of the requirements water marking
method,” Requirements Engineering, vol. 18, pp. 147–173, 4 2013.

[80] R. J. Gurrera and N. L. Perry, “Clozapine-associated aspiration pneumonia: Case series and review of the literature: Reply.,”
Psychosomatics, vol. 60, pp. 103–, 7 2018.

[81] C.-Y. Loo, W.-H. Lee, and Q. T. Zhou, “Recent advances in inhaled nanoformulations of vaccines and therapeutics targeting
respiratory viral infections.,” Pharmaceutical research, vol. 40, pp. 1015–1036, 4 2023.

[82] A. Javed, D. M. Rizzo, B. S. Lee, and R. Gramling, “Somtimes: self organizing maps for time series clustering and its
application to serious illness conversations.,” Data mining and knowledge discovery, vol. 38, pp. 813–839, 10 2023.

[83] J. H. Moore, I. Barnett, M. R. Boland, Y. Chen, G. Demiris, G. Gonzalez-Hernandez, D. S. Herman, B. E. Himes, R. A.
Hubbard, D. Kim, J. S. Morris, D. L. Mowery, M. D. Ritchie, L. Shen, R. J. Urbanowicz, and J. H. Holmes, “Ideas for how
informaticians can get involved with covid-19 research.,” BioData mining, vol. 13, pp. 3–, 5 2020.

[84] M. Muniswamaiah, T. Agerwala, and C. C. Tappert, “Approximate query processing for big data in heterogeneous databases,”
in 2020 IEEE international conference on big data (big data), pp. 5765–5767, IEEE, 2020.

[85] A. Rajkomar, E. Loreaux, Y. Liu, J. Kemp, B. Li, M.-J. Chen, Y. Zhang, A. Mohiuddin, and J. Gottweis, “Deciphering clinical
abbreviations with a privacy protecting machine learning system.,” Nature communications, vol. 13, pp. 7456–, 12 2022.

[86] E. Ekure, G. Ovenseri-Ogbomo, U. L. Osuagwu, K. E. Agho, B. N. Ekpenyong, K. C. Ogbuehi, A. O. Ndep, P. Okonji, K. P.
Mashige, and K. S. Naidoo, “A systematic review of diabetes risk assessment tools in sub-saharan africa,” International
Journal of Diabetes in Developing Countries, vol. 42, pp. 380–393, 2 2022.

[87] E. Mahmoudi, W. Wu, C. Najarian, J. Aikens, J. Bynum, and V. Vydiswaran, “Leveraging natural language processing to
identify caregiver availability for patients with alzheimer’s disease,” Innovation in Aging, vol. 6, pp. 449–450, 11 2022.

[88] R. Wadia, K. M. Akgün, C. Brandt, B. T. Fenton, W. Levin, A. H. Marple, V. Garla, M. G. Rose, T. H. Taddei, and C. R.
Taylor, “Comparison of natural language processing and manual coding for the identification of cross-sectional imaging
reports suspicious for lung cancer.,” JCO clinical cancer informatics, vol. 2, no. 2, pp. 1–7, 2018.

[89] J. Wang, N. A. el Rub, J. H. Gray, H. A. Pham, Y. Zhou, F. J. Manion, M. Liu, X. Song, H. Xu, M. Rouhizadeh, and Y. Zhang,
“Covid-19 signsym: a fast adaptation of a general clinical nlp tool to identify and normalize covid-19 signs and symptoms
to omop common data model.,” Journal of the American Medical Informatics Association : JAMIA, vol. 28, pp. 1275–1283,
7 2020.

[90] D. Ding, A. Stachel, E. Iturrate, and M. Phillips, “1184. making pneumonia surveillance easy: Automation of pneumonia
case detection,” Open Forum Infectious Diseases, vol. 6, pp. S424–S425, 10 2019.

[91] A. Sharma and K. M. Goolsbey, “Learning search policies in large commonsense knowledge bases by randomized
exploration,” 2018.

[92] A. Cocci, M. Pezzoli, M. L. Re, G. I. Russo, M. G. Asmundo, M. Fode, G. Cacciamani, S. Cimino, A. Minervini, and
E. Durukan, “Quality of information and appropriateness of chatgpt outputs for urology patients.,” Prostate cancer and
prostatic diseases, vol. 27, pp. 103–108, 7 2023.

[93] J. R. Gregg, M. Lang, L. L. Wang, M. J. Resnick, S. K. Jain, J. L. Warner, and D. A. Barocas, “Automating the determination
of prostate cancer risk strata from electronic medical records.,” JCO clinical cancer informatics, vol. 1, pp. 1–8, 6 2017.

[94] J. R. Machireddy, “Harnessing ai and data analytics for smarter healthcare solutions,” International Journal of Science and
Research Archive, vol. 08, no. 02, pp. 785–798, 2023.

[95] A. Sharma and K. Goolsbey, “Identifying useful inference paths in large commonsense knowledge bases by retrograde
analysis,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, 2017.

[96] Z. He, C. Tao, J.-G. Bian, and R. Zhang, “Selected articles from the fourth international workshop on semantics-powered
data mining and analytics (sepda 2019).,” BMC medical informatics and decision making, vol. 20, pp. 315–, 12 2020.

[97] V. Baroutsou, R. C. G. Pena, R. Schweighoffer, M. Caiata-Zufferey, S. Kim, S. Hesse-Biber, F. M. Ciorba, G. Lauer,
M. Katapodi, and null null, “Predicting openness of communication in families with hereditary breast and ovarian cancer
syndrome: Natural language processing analysis.,” JMIR formative research, vol. 7, pp. e38399–e38399, 1 2023.


	Introduction
	Foundations of Automated Healthcare Claims Auditing
	NLP Strategies for Large-Scale Analysis
	Mathematical Formulation of Compliance Checking
	Experimental Observations and Results
	Case Studies
	Conclusion

