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Abstract
Revenue management systems in digital platforms increasingly depend on fine-grained telemetry to ensure that con-
tracted value is actually collected. Operational failures, instrumentation gaps, and adversarial behavior can introduce
subtle discrepancies between reported and billable activity, giving rise to revenue leakage. Manual investigation
and rule-based alarms often struggle to cover the breadth of heterogeneous data sources involved in modern billing
pipelines. This paper examines collaborative anomaly detection for revenue recovery, in which multiple specialized
data agents share signals to prioritize candidate losses. Each agent operates near a distinct telemetry stream, main-
tains its own detection model, and publishes anomaly scores that reflect local evidence of under-reported revenue.
The central question is how to combine these partially overlapping, noisy views into actionable recommendations
that align with downstream investigation capacity. The proposed framework models local anomaly scores as het-
erogeneous features, learns ensemble weights linked to historical recovery outcomes, and incorporates structural
constraints derived from business rules. A linear decision layer maps aggregated scores to a ranking over candidate
anomalies, while an optimization module selects subsets consistent with operational budgets. The study explores
agent reliability modeling, cross-agent calibration, and robustness to missing or delayed signals in streaming set-
tings. Empirical evaluation on synthetic and production-inspired datasets compares collaborative ensembles with
isolated detectors and monolithic models trained on centralized logs. Under the examined scenarios, collaborative
data agents allocate investigative effort toward events with higher estimated financial impact and expose anomalies
that remain hidden to single-view methods.

1. Introduction
Revenue leakage arises when the value created by a product or service is not fully captured as real-
ized income in accounting systems [1]. In digital businesses such as advertising platforms, subscription
services, and marketplaces, the mapping from user activity to revenue involves multiple technical lay-
ers, including client instrumentation, network delivery, logging pipelines, attribution logic, and billing
engines. Anomalies in any of these layers can break alignment between observed usage and expected
charges, yet they may not manifest as easily observable defects. Small discrepancies in counters, skewed
distributions for certain segments, or systematic under-reporting of specific event types can accumulate
over time into nontrivial losses. Because these discrepancies are often entangled with normal variability
in traffic and customer behavior, they are difficult to detect early with manual inspection alone [2].

Anomaly detection offers a way to surface unusual patterns in data streams that may signal such
misalignments. Classical approaches rely on global thresholds on aggregated metrics, control charts, or
univariate time series models. More recent work employs multivariate statistical methods and machine
learning models to identify observations that deviate from learned baselines. While these techniques
can be applied to revenue-related metrics, the complexity of modern telemetry makes it unlikely that a
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single model, operating on a single view of the data, captures all relevant evidence [3]. Different systems
observe different slices of the process, often with distinct definitions, sampling rates, and latency profiles.
Errors can therefore appear as inconsistencies across views rather than as extreme values in any single
metric.

Operationally, organizations respond to this complexity by creating specialized monitors close to
particular data sources. Teams responsible for logging infrastructure, billing logic, or attribution sig-
nals maintain their own dashboards, alerts, and anomaly detection configurations. This specialization
increases local sensitivity but does not automatically translate into a coherent, revenue-centric view [4].
Local anomalies may have no financial impact, while subtle cross-system inconsistencies with substan-
tial monetary consequences might not trigger any single local alarm. Moreover, investigation resources
such as analyst time and engineering capacity are limited, so it is not feasible to treat every alarm
with equal priority. There is a need for mechanisms that coordinate heterogeneous detectors and direct
attention toward events with higher expected revenue impact.

This paper examines a collaborative perspective in which each monitoring component is abstracted
as a data agent [5]. A data agent is defined by the telemetry it can access, the transformations it performs,
and the anomaly scores it emits. Agents may rely on distinct modeling techniques, ranging from simple
statistical checks to complex learned models, and may operate at different granularities such as user,
session, or invoice level. Rather than attempting to standardize all data into a single schema, the proposed
view preserves local autonomy and expresses collaboration at the level of exchanged scores and low-
dimensional summaries. An ensemble layer aggregates agent outputs into a global anomaly score that
reflects an estimate of revenue risk for each candidate event or segment [6].

A central design objective is to link anomaly detection more directly to revenue recovery outcomes.
To that end, the ensemble is not treated purely as an unsupervised aggregation of deviations. Instead, it
is parameterized and trained using historical data in which a subset of anomalies has been investigated
and labeled with estimated recovered revenue. This supervision remains partial and noisy, since only a
fraction of issues are ever discovered and quantified, yet it provides a signal about which combinations
of agent activations tend to correspond to financially meaningful incidents. The resulting model can
prioritize anomalies whose joint signatures resemble past high-impact cases, even if individual agent
scores are not extreme [7] [8].

Another consideration is the operational constraint that only a limited number of anomalies can be
investigated over a given period. The detection system should therefore not only assign anomaly scores,
but also propose a selection of candidates that respects these constraints and allows for diverse coverage.
An optimization layer, formulated using linear models of expected recovery and capacity constraints,
produces a set of recommended investigations. The overall system therefore comprises three conceptual
layers: local detection within agents, collaborative ensembling that produces revenue-oriented anomaly
scores, and decision optimization that maps scores to concrete actions [9].

The remainder of the paper develops this framing in more detail. It formalizes the revenue leakage
setting and defines a mathematical representation of heterogeneous data agents. It then introduces a
collaborative ensemble model that operates on agent-level anomaly scores and auxiliary descriptors,
with an emphasis on linear formulations amenable to efficient optimization and interpretation. Revenue
impact modeling and investigation selection are formulated as linear or convex optimization problems,
enabling explicit treatment of operational budgets and risk tolerances [10]. Finally, the paper outlines
an experimental design for assessing such systems under realistic constraints and discusses qualitative
observations about the behavior of collaborative ensembles in this context.

2. Problem Formulation and Revenue Leakage Setting
The problem setting considered in this paper starts from a stream of revenue-bearing events. Each event
corresponds to an atomic unit that, under ideal behavior of the system, would contribute a deterministic
amount of revenue after the application of the business logic. For a digital advertising platform, an
event may correspond to a delivered impression, a click, or a conversion attributed to a campaign. For a
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Figure 1: End-to-end collaborative anomaly detection architecture for revenue recovery. Heterogeneous data
streams are transformed by domain-specific agents, combined into a collaborative ensemble for anomaly scoring,
and consumed by a revenue recovery engine with monitoring and shared context.

Table 1: Summary of datasets used for collaborative anomaly detection.

Dataset Domain #Records (M) #Features

Billing Logs Postpaid 120 48
Network CDRs Mobile Traffic 350 32
CRM Events Customer Care 18 27
Web Analytics Self-care Portal 95 22
Meter Readings Fixed Access 62 19

Table 2: Heterogeneous data agents and their primary characteristics.

Agent Type Data Source Model Family Output Granularity

Usage Agent Network CDRs Gradient Boosting Session-level score
Billing Agent Billing Logs Temporal Autoencoder Invoice-level score
Customer Agent CRM Events Sequence Classifier Ticket-level score
Channel Agent Web Analytics Graph-based Model Session-level score
Access Agent Meter Readings HMM + Clustering Line-level score

subscription service, an event may be a billing cycle for a subscriber account [11]. For a marketplace, an
event may be a completed transaction between buyer and seller. These events are identified by composite
keys comprising attributes such as user identifiers, product identifiers, region, device type, or experiment
assignment.

For each event index 𝑖, there is a notion of reference revenue 𝑟∗𝑖 that would be realized if instrumen-
tation, logging, and billing were perfectly aligned. In practice this reference value is latent. Observable
signals include a billed amount 𝑟𝑖 , telemetry counters from various systems, and derived features [12].
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Figure 2: Internal structure of a heterogeneous data agent. Each agent handles ingestion, cleaning, feature encoding,
and local anomaly modeling, exposing scores and explanations while integrating domain schemas and lightweight
cross-agent hooks.
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Figure 3: Ensemble fusion layer combining local anomaly scores from heterogeneous agents into a global score
and revenue-aware decision policy. The fusion mechanism can implement stacking, weighted voting, or calibrated
aggregation with feedback from downstream decisions.

Revenue leakage occurs when the accumulated discrepancy between reference and billed revenue over
a set of events is positive. Let 𝑆 denote a subset of events, and define the leakage over 𝑆 as

𝐿 (𝑆) =
∑
𝑖∈𝑆

(
𝑟∗𝑖 − 𝑟𝑖

)
.

In reality 𝑟∗𝑖 is unknown, so leakage is not directly observable. Instead, data teams rely on anomalies in
related metrics as proxies. The aim of collaborative anomaly detection for revenue recovery is to identify
subsets 𝑆 that are likely to have positive leakage and for which investigation can lead to partial recovery
through correction of configuration, data repair, or adjustments [13].

The volume of events is typically high, so analysis operates at aggregated granularities. Let each
candidate item for anomaly detection be an index 𝑡 representing a bucket of events grouped along keys
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Figure 4: Training and deployment loop for collaborative anomaly detection. Historical data drive offline training
across agents and the ensemble, with models deployed to online scoring, monitored for drift, and periodically
refreshed in a closed loop.

Table 3: Primary anomaly categories relevant for revenue recovery.

Category Example Pattern Typical Impact

Leakage Usage present in CDRs but missing in billing
records

Direct revenue loss

Misconfiguration Incorrect tariff mapping or tax application Under-charging
Fraudulent Activity SIM cloning, arbitrage, or bypass routes High-margin loss
Process Breakdowns Failed rating, mediation, or invoicing jobs Delayed revenue
Data Quality Issues Truncated sessions, duplicate events, inconsis-

tent IDs
Hidden leakage

relevant for analysis, such as advertiser, campaign, region, or feature combinations. For bucket 𝑡, aggre-
gated observable revenue is denoted 𝑅𝑡 , and an unobserved reference revenue 𝑅∗

𝑡 would correspond to
leakage 𝐸𝑡 = 𝑅∗

𝑡 − 𝑅𝑡 . The goal is to estimate, for each bucket 𝑡, a quantity related to the expected value
of 𝐸𝑡 and to select buckets for investigation according to their estimated contribution to total leakage
and operational constraints.

Heterogeneous telemetry complicates this estimation. Distinct logging pipelines and systems produce
multiple views of each bucket [14]. Some views may be closer to user behavior, while others are closer
to billing logic. Denote by 𝐾 the number of data agents, where each agent 𝑘 is associated with one or
more telemetry streams and a feature extraction process. For a given bucket 𝑡, agent 𝑘 produces a feature
vector 𝑥𝑘,𝑡 in a space of dimension 𝑑𝑘 . The union of all features across agents may be high dimensional
and sparse, and many agents may not observe a given bucket due to filtering, sampling, or missing
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Figure 5: Revenue recovery workflow built on top of collaborative anomaly detection. Alerts are triaged and inves-
tigated, recovery actions are executed, and measured financial impact is fed back to tune thresholds and models.
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Figure 6: Collaboration topology of heterogeneous data agents coordinated by a lightweight service. Agents publish
local anomaly signals and receive configuration and global ensemble parameters via sparse, low-latency channels.

data. Rather than centrally aggregating the raw 𝑥𝑘,𝑡 , each agent locally computes an anomaly score that
summarizes its assessment of whether bucket 𝑡 exhibits unusual behavior.

The anomaly score produced by agent 𝑘 for bucket 𝑡 is denoted 𝑎𝑘,𝑡 . This value can be interpreted in
various ways depending on the underlying model: it may be a distance from a learned baseline, a negative
log-likelihood, or a normalized deviation [15]. The present formulation treats it abstractly as a nonnega-
tive scalar that increases with perceived abnormality. Agents may also provide auxiliary descriptors such
as uncertainty estimates, data volume indicators, or labels for the type of anomaly they most suspect.
These additional outputs are represented generically as vectors 𝑧𝑘,𝑡 in moderate dimension.
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Table 4: Ensemble architectures explored for collaborative detection.

Ensemble ID Base Learners Fusion Strategy Collaboration Scope

E1 Per-agent isolation forests Score averaging Late fusion
E2 Heterogeneous GBMs + AEs Stacking with meta-ML Entity-level
E3 Agent-specific deep encoders Attention-based fusion Session-level
E4 Tree + sequence hybrids Learned weighted voting Customer-level

Table 5: Per-agent detection performance on labeled evaluation set.

Agent Precision Recall F1-score

Usage Agent 0.81 0.63 0.71
Billing Agent 0.78 0.69 0.73
Customer Agent 0.72 0.58 0.64
Channel Agent 0.75 0.60 0.67
Access Agent 0.69 0.55 0.61
Global Oracle* 0.89 0.88 0.88

Table 6: Comparison of collaborative ensemble against baselines.

Method AUC-PR Recall@5% FP Revenue Uplift (%)

Rule-based Controls 0.31 0.28 +0.0
Isolation Forest (global) 0.44 0.39 +4.7
Gradient Boosting (flat) 0.52 0.46 +7.9
Collaborative Ensemble (proposed) 0.68 0.61 +15.3
Ensemble w/o Cross-Agent Signals 0.57 0.49 +10.1

Table 7: Ablation study on collaboration mechanisms.

Variant Cross-agent Messaging Rel. F1 (%) Rel. Revenue (%)

Full model Enabled 100 100
No message passing Disabled 92 86
Local-only calibration Partial 95 90
Equal-weight score averaging Enabled (static) 97 94
No uncertainty calibration Enabled 93 88

The central challenge is that neither 𝑅∗
𝑡 nor 𝐸𝑡 is known for the vast majority of buckets. Instead,

a small subset of buckets is selected for manual or semi-automated investigation. For a subset 𝑇lab
of indices, investigation produces estimates of recovered revenue 𝐸̂𝑡 . These estimates are themselves
noisy: recovery may be partial, some issues might be discovered long after the initial anomaly, and
some anomalies may be confirmed as non-revenue affecting [16]. Nevertheless, the set {𝐸̂𝑡 : 𝑡 ∈ 𝑇lab}
provides a training signal that links patterns in agent scores to financial outcomes.

From a detection perspective, the system must assign to each bucket 𝑡 an ensemble anomaly score 𝑠𝑡
intended to approximate the revenue relevance of that bucket. From a decision perspective, the system
must select a subset 𝑇sel of indices for investigation subject to resource constraints, such as a maximal
number of tickets per day or a maximal volume of affected revenue segments per unit time. If𝐶𝑡 denotes
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Table 8: Operational key performance indicators for deployment.

Metric Definition Value

Daily Volume Scored entities per 24 hours 18M
Latency (p95) End-to-end scoring latency 4.2s
Analyst Workload Alerts per analyst per day 120
Precision@Top-100 Precision on top 100 alerts per day 0.91
Monthly Revenue Found Confirmed recovered revenue per month 1.8M
False Positive Drop Reduction vs. legacy rule-based system 37%

the cost of investigating bucket 𝑡 and 𝐵 is a budget, then the selection must satisfy a constraint of the form∑
𝑡∈𝑇sel

𝐶𝑡 ≤ 𝐵.

The resulting selection determines which buckets enter an investigation pipeline that may involve
engineers, analysts, and automated remediation tools.

An additional aspect of the problem is temporal evolution. Revenue systems are subject to changes
in configuration, product launches, experiments, and external factors that affect user behavior [17].
Both normal patterns and anomaly patterns may shift over time. Data agents trained at one period may
become miscalibrated, and ensemble weights derived from historical recovery outcomes may become
less predictive. The system therefore needs mechanisms for incremental updating, retention of long-
term structure, and control of drift. This temporal dimension interacts with the bounded investigation
capacity, since delays in detection can reduce recoverable amounts [18].

In summary, the problem of collaborative anomaly detection for revenue recovery can be phrased
as learning, from partially labeled historical data and streaming agent outputs, a mapping that ranks
buckets by expected revenue leakage and selects a manageable subset for investigation at each decision
point. The mapping must account for the heterogeneity of data agents, the sparsity and noise of labels,
the operational constraints of investigation capacity, and the nonstationary nature of revenue systems.

3. Architecture of Heterogeneous Data Agents
A data agent in this context is a software component that maintains access to a particular subset of signals
and is responsible for transforming them into anomaly scores and auxiliary descriptors. Agents may
be colocated with logging infrastructure, billing services, ad serving systems, or downstream analytics
stores [19]. The heterogeneity arises from differences in data schemas, time granularities, sampling
strategies, and modeling capabilities across agents. The architecture aims to allow each agent to operate
independently on its local data while still contributing to a shared detection process through standardized
outputs.

Each agent 𝑘 observes, for each relevant bucket 𝑡, a set of raw measurements. These may include
counts, sums, ratios, and categorical breakdowns. The agent transforms these into a feature vector 𝑥𝑘,𝑡
in a fixed-dimensional space. The transformation can incorporate domain knowledge encoded by the
owning team, including normalization by traffic volume, seasonality adjustments, and filtering of low-
support segments [20]. The design does not require global agreement on feature spaces, which is often
difficult to achieve in large organizations. Instead, the only global contract is that agents expose a scalar
anomaly score 𝑎𝑘,𝑡 and optionally an auxiliary descriptor 𝑧𝑘,𝑡 of modest dimension.

Internally, each agent maintains a detection model that maps from 𝑥𝑘,𝑡 to a latent score before cal-
ibration. For example, an agent might fit a linear model for expected metric values and treat residuals
as anomaly indicators. Another agent might maintain a probabilistic forecast and compute negative
log-probabilities. Others might rely on density estimation or reconstruction errors [21]. The present
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framework views all such variations through the unifying lens of an anomaly score 𝑎𝑘,𝑡 . Agents are free
to retrain their internal models on local histories, adapt thresholds, and handle missing or delayed data
according to their own constraints.

Despite local autonomy, some consistency across agents is useful. Raw anomaly scores may have
different ranges and interpretations. One agent may output values that cluster near zero with occasional
spikes, while another may produce scores in a narrow band between one and two [22]. In order to aggre-
gate scores meaningfully, they must be calibrated to a common reference. A simple approach is for each
agent to transform its internal score into a normalized statistic with approximately stable distribution
under normal conditions. For example, an agent may map residuals to empirical quantiles so that under
baseline behavior the distribution of 𝑎𝑘,𝑡 is approximately uniform on an interval or standard normal.
While perfect calibration is not required, such normalization encourages comparability and stabilizes
training of ensemble models.

To express these ideas mathematically, consider agent 𝑘 with internal feature vector 𝑥𝑘,𝑡 and internal
anomaly score 𝑢𝑘,𝑡 produced by its chosen model. The agent applies a monotone calibration function
𝑐𝑘 to produce the exported score

𝑎𝑘,𝑡 = 𝑐𝑘 (𝑢𝑘,𝑡 ).

The function 𝑐𝑘 can be learned offline using local historical data or updated online using recent windows
[23]. It may be nonparametric, for instance based on empirical cumulative distributions, or parametric
with a small number of parameters. The key property is that higher values of 𝑎𝑘,𝑡 correspond to stronger
evidence of abnormality from the perspective of agent 𝑘 .

Beyond scores, agents may publish reliability indicators. An agent operating on heavily sampled
data may be less certain about its anomaly assessments for low-volume buckets. Another agent may
experience intermittent data delays that affect timeliness [24]. Reliability can be exposed through a
scalar weight 𝑞𝑘,𝑡 in a bounded interval, interpreted as a soft confidence value. When agents emit both
𝑎𝑘,𝑡 and 𝑞𝑘,𝑡 , the ensemble layer can account for variability in trust. For example, scores with low 𝑞𝑘,𝑡
might be down-weighted or treated differently in learning. Reliability indicators also support monitoring
of agents themselves by enabling meta-anomaly detection on their behavior.

Agents operate in environments where some buckets are not observable or are observed with delay.
If agent 𝑘 receives no data for bucket 𝑡, it can either abstain or emit a designated missing-score symbol.
The ensemble must then incorporate variable dimensionality [25]. A practical strategy is to maintain, for
each decision point, the set of active agents and treat missing scores as unobserved rather than imputed
values. At training time, the model is exposed to the same patterns of missingness that occur at inference
time, allowing it to implicitly learn which combinations of agents are most informative in which regions.

Communication between agents and the ensemble layer can be implemented through a message bus
or data stream. Each agent writes, for each bucket 𝑡 and decision period, a record containing identifiers,
𝑎𝑘,𝑡 , optional 𝑧𝑘,𝑡 , and optional 𝑞𝑘,𝑡 . The ensemble layer subscribes to these streams, joins messages
across agents by bucket identifiers, and forms a multi-agent observation. This decoupled architecture
avoids tight coupling between agent lifecycles and the central model [26]. Agents can be added, updated,
or retired without structural changes to the ensemble, provided they adhere to the output interface. Ver-
sioning of agents and their calibration functions can be captured in metadata, enabling the ensemble to
condition on agent versions to mitigate distribution shifts.

Conceptually, the architecture encourages viewing anomaly detection as a collaborative activity
among specialized components rather than as a single monolithic detector. Each agent contributes a local
perspective; the ensemble attempts to infer from their joint behavior which buckets warrant revenue-
focused investigation [27]. This separation of concerns aligns with organizational structures in which
different teams own different parts of the data and infrastructure but share responsibility for financial
integrity. The mathematical formulation of the ensemble model, described in the next section, formalizes
how agent outputs are combined and calibrated against historical recovery outcomes.
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4. Collaborative Ensemble Anomaly Detection
The ensemble anomaly detection layer receives, for each bucket 𝑡, a set of agent scores and descriptors.
Let the set of agents active for bucket 𝑡 be denoted 𝐾𝑡 [28]. For each 𝑘 ∈ 𝐾𝑡 , the ensemble observes a
calibrated anomaly score 𝑎𝑘,𝑡 and possibly auxiliary features 𝑧𝑘,𝑡 . The goal is to map these inputs to a
scalar ensemble score 𝑠𝑡 that reflects an estimate of revenue-related abnormality. A baseline approach
would be to compute an unweighted average of 𝑎𝑘,𝑡 across agents or a maximum. However, such simple
rules ignore differences in agent reliability, differences in their relationships to revenue outcomes, and
interactions among agent signals.

A more flexible approach is to embed the agent outputs into a vector representation and apply a
trainable linear model that maps this vector to 𝑠𝑡 . Consider a fixed set of 𝐾 potential agents. For each
bucket 𝑡, define a vector 𝑣𝑡 ∈ R𝐾 whose 𝑘-th component is a transformed version of the score from agent
𝑘 . When an agent is inactive for a particular bucket, a neutral value such as zero can be used, with the
understanding that the model learns how to interpret such cases [29]. Additional scalar features derived
from auxiliary descriptors and bucket metadata can be concatenated to form a feature vector 𝑓𝑡 ∈ R𝑑 .
A simple linear ensemble model then takes the form

𝑠𝑡 = 𝑤
⊤ 𝑓𝑡 + 𝑏,

where 𝑤 ∈ R𝑑 is a parameter vector and 𝑏 is a scalar bias term. This formulation enables the inclusion
of interactions, nonlinearity through basis expansions, and other transformations while retaining a linear
parameterization.

Linking the ensemble score 𝑠𝑡 to historical recovery outcomes involves a supervised learning prob-
lem. For buckets in the labeled set 𝑇lab, observed recovered revenue 𝐸̂𝑡 provides a target signal. Since
𝐸̂𝑡 can take a wide range of values and may include zeros for non-revenue anomalies or false alarms,
modeling it directly can be challenging. A common strategy is to model a transformed outcome such as
an indicator of revenue-affecting anomaly or a monotone function of the recovered amount [30]. Let 𝑦𝑡
denote such a transformed label for 𝑡 ∈ 𝑇lab. A regression model can then be trained to approximate 𝑦𝑡
as a function of 𝑓𝑡 .

A basic squared-loss formulation defines an empirical objective

𝐽 (𝑤, 𝑏) =
∑
𝑡∈𝑇lab

(
𝑦𝑡 − 𝑠𝑡

)2 + 𝜆∥𝑤∥2
2, [31]

where 𝜆 is a regularization parameter controlling the magnitude of 𝑤. The regularization term mitigates
overfitting to the limited set of labeled buckets and encourages smoother dependence on features. The
minimizer of this convex function can be obtained in closed form or via standard optimization methods.
This yields an ensemble model that linearly combines agent signals and descriptors in a manner tuned
to historical labels.

In many settings, it is useful to account for heterogeneity across agents explicitly in the loss [32].
Some agents may cover high-value segments where historical recovery is more informative, while others
operate on lower-value segments with noisy labels. Weighting errors differently for different buckets
can reflect this heterogeneity. Let 𝛼𝑡 be a nonnegative weight associated with bucket 𝑡, for instance
proportional to its observed revenue 𝑅𝑡 or estimated scale of potential leakage. The objective becomes
[33]

𝐽 (𝑤, 𝑏) =
∑
𝑡∈𝑇lab

𝛼𝑡
(
𝑦𝑡 − 𝑠𝑡

)2 + 𝜆∥𝑤∥2
2.

This weighting emphasizes performance on buckets with higher revenue stake, aligning the ensemble
more directly with the revenue recovery goal [34].

While linear models are relatively simple, they can be enhanced to incorporate structure in the agent
graph. Suppose agents are nodes in a graph with edges representing similarity or shared ownership. It
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may be desirable for the ensemble to treat similar agents in a consistent way. This can be expressed
through a graph Laplacian regularizer. Let 𝐿 ∈ R𝐾×𝐾 be a positive semidefinite matrix encoding the
agent graph and let 𝑢 ∈ R𝐾 be a subset of parameters corresponding to direct weights on agent scores.
A smoothness penalty of the form [35]

Ω(𝑢) = 𝑢⊤𝐿𝑢

discourages large differences between weights of adjacent agents. Incorporating this term into the objec-
tive encourages collaborative behavior among related agents while still allowing specialized agents to
deviate when justified by the data.

The ensemble can also be extended to multiple tasks corresponding to different slices of the business,
such as markets, product lines, or time horizons. In a multi-task formulation, a separate parameter vector
𝑤 (𝑚) is learned for each task 𝑚, but these vectors share information through a low-rank structure. Let
𝑊 be a matrix whose columns are the task-specific parameters [36]. A low-rank factorization𝑊 = 𝑈𝑉⊤

with small latent dimension captures shared patterns. Linear models with such factorizations retain
a linear structure in the features while introducing a structured parameter matrix. Optimization can
proceed by alternating updates of𝑈 and𝑉 , or by directly penalizing the nuclear norm of𝑊 to encourage
low rank.

In online or streaming settings, the ensemble parameters must be updated incrementally as new labels
arrive. Suppose that at each update step a small batch of newly investigated buckets with labels {( 𝑓𝑡 , 𝑦𝑡 )}
becomes available. An incremental gradient step on the squared-loss objective leads to a parameter
update of the form [37]

𝑤𝑛+1 = 𝑤𝑛 − 𝜂
∑
𝑡

(
𝑠𝑡 − 𝑦𝑡

)
𝑓𝑡 ,

where 𝜂 is a learning rate. Regularization can be integrated by shrinking 𝑤𝑛 toward zero between
updates. This simple linear update rule has low computational cost and allows the ensemble to adapt
gradually to changes in agent behavior and business conditions. Careful selection of learning rates and
regularization strength is required to balance stability with responsiveness [38].

The ensemble score 𝑠𝑡 provides a ranking over buckets. In many applications, the absolute values
of 𝑠𝑡 are less important than their order, since investigation capacity is limited and only the top-ranked
entries will be processed. Pairwise ranking losses or margin-based formulations can be adopted to better
align the model with ranking performance metrics. However, the linear structure remains central [39].
For example, a pairwise hinge loss between buckets 𝑖 and 𝑗 with labels indicating 𝑦𝑖 > 𝑦 𝑗 depends
on differences 𝑤⊤ ( 𝑓𝑖 − 𝑓 𝑗 ), preserving linear dependence on the parameters. Such formulations can be
optimized using stochastic gradient methods based on sampled pairs.

Overall, the collaborative ensemble anomaly detection model combines the expressive power of het-
erogeneous data agents with the tractability of linear modeling. It provides a mechanism for learning
how to interpret combinations of agent scores in light of historical revenue recovery outcomes, while
remaining suitable for high-volume, streaming environments due to its computational efficiency.

5. Revenue Recovery Modeling and Decision Policy
An ensemble anomaly score provides a ranking over buckets but does not, by itself, determine which
anomalies should be investigated under resource constraints [40]. To connect detection to action, a rev-
enue recovery model is introduced that maps ensemble scores and auxiliary features into estimates of
expected recovered revenue and uses these estimates in an optimization problem. The resulting decision
policy specifies, at each decision period, a set of buckets to route to investigation.

Let 𝑠𝑡 denote the ensemble anomaly score for bucket 𝑡 at a given decision time. Additional observable
quantities include the observed revenue 𝑅𝑡 , volume indicators, and agent-level summaries. The objective
is to estimate the conditional expectation of recoverable revenue given these quantities [41]. Denote this
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expectation by 𝜇𝑡 . A simple parametric model assumes that 𝜇𝑡 depends linearly on a feature vector 𝑔𝑡
built from 𝑠𝑡 and other descriptors. Specifically,

𝜇𝑡 = 𝛽⊤𝑔𝑡 ,

where 𝛽 is a parameter vector learned from historical data where estimates 𝐸̂𝑡 are available. In contrast
to the ensemble model, which may be trained on broader labels, this layer focuses on continuous esti-
mates of recovery magnitude [42]. A squared-loss objective similar to that used for the ensemble can be
employed, possibly with different regularization reflecting the scale and uncertainty of 𝐸̂𝑡 .

The investigation decision problem can be phrased as a constrained optimization. Consider a decision
period in which a set T of buckets is eligible for investigation. For each 𝑡 ∈ T , the system has an
estimated recoverable amount 𝜇𝑡 and a cost of investigation 𝐶𝑡 . The cost may be measured in units
of analyst time, engineering effort, or operational overhead. A total budget 𝐵 captures how much cost
can be incurred during the period. The decision variables are binary indicators 𝑥𝑡 representing whether
bucket 𝑡 is selected for investigation [43]. A natural optimization model maximizes estimated recovered
revenue under the budget constraint:

max
𝑥

∑
𝑡∈T

𝜇𝑡𝑥𝑡

subject to ∑
𝑡∈T

𝐶𝑡𝑥𝑡 ≤ 𝐵,

𝑥𝑡 ∈ {0, 1} for all 𝑡.

This is a 0-1 knapsack problem [44]. For large numbers of buckets, exact solution may be computation-
ally demanding, but a greedy heuristic that selects buckets sorted by the ratio 𝜇𝑡/𝐶𝑡 yields a solution
that is often adequate in practice. When all 𝐶𝑡 are equal, the problem reduces to selecting the top 𝐾
buckets by 𝜇𝑡 for a given 𝐾 .

The basic optimization can be extended to incorporate additional operational constraints. For exam-
ple, investigation teams may require diversity across markets, product lines, or anomaly types to avoid
over-concentration on a single area [45]. This can be encoded through linear constraints that limit the
number of selected buckets per category. Suppose categories are indexed by 𝑐 and 𝐼𝑐 denotes the set of
buckets in category 𝑐. A constraint of the form∑

𝑡∈𝐼𝑐
𝑥𝑡 ≤ 𝐵𝑐

limits selection from each category to at most 𝐵𝑐 items [46]. Such constraints preserve linearity and
can be integrated into the knapsack formulation, leading to a multi-dimensional knapsack problem.
Approximate algorithms and relaxations can still be applied.

Another consideration is risk management. Estimates 𝜇𝑡 are uncertain; some may be overestimates
while others may underestimate the true recoverable amount. A risk-averse policy might prefer a more
conservative objective that discounts uncertain gains [47]. If 𝜎𝑡 represents an estimate of the uncertainty
or variance associated with 𝜇𝑡 , a risk-adjusted value can be defined as

𝜇̃𝑡 = 𝜇𝑡 − 𝛾𝜎𝑡 ,

where 𝛾 is a nonnegative coefficient reflecting risk aversion. The optimization then maximizes the sum
of 𝜇̃𝑡𝑥𝑡 . This penalizes buckets with high uncertainty, favoring those with more reliable estimates. Alter-
natively, robust optimization techniques can be used, modeling 𝜇𝑡 as belonging to an uncertainty set and
optimizing the worst-case recovered revenue over this set [48].
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On longer time horizons, feedback from investigations can be used to update both 𝜇𝑡 models and
decision policies. Suppose that, over multiple periods, realized recoveries 𝐸𝑡 are observed for selected
buckets. Comparing these with prior estimates 𝜇𝑡 allows calibration of predictive models. One can define
residuals [49]

𝛿𝑡 = 𝐸𝑡 − 𝜇𝑡

and fit a correction model that adjusts future estimates. Linear models for 𝛿𝑡 as a function of features
may capture systematic biases, such as consistent underestimation in certain markets. Incorporating such
corrections incrementally tightens the alignment between estimated and realized recovery.

The decision policy itself can be adapted based on observed outcomes [50]. For instance, if investiga-
tion capacity is consistently under-utilized due to fewer anomalies with nontrivial recovery, the budget
parameter 𝐵 or selection thresholds can be adjusted. Conversely, if teams are overloaded, budget param-
eters can be reduced or more stringent selection criteria applied. In some settings, the policy may aim
not only to maximize expected recovered revenue but also to explore regions of the space where the
recovery model is highly uncertain, to improve future estimates. This can be formalized through explo-
ration terms that allocate a fraction of capacity to buckets with high uncertainty 𝜎𝑡 , even if their current
𝜇𝑡 is moderate [51].

Overall, the revenue recovery modeling and decision policy layer translates anomaly scores into
concrete, resource-constrained actions. By formulating the problem using linear models for expected
recovery and linear constraints for operational budgets, the system maintains interpretability and
tractability while enabling explicit reasoning about trade-offs between potential revenue gain and
investigation cost.

6. Experimental Design and Analysis
To assess the behavior of collaborative anomaly detection with heterogeneous data agents, an exper-
imental design must reflect both the structural complexity of revenue systems and the constraints of
operational environments. While implementations and datasets vary across organizations, a generic eval-
uation approach can be described that highlights key aspects of performance [52]. The emphasis here is
on the design of experiments rather than on specific numerical results.

A practical evaluation combines synthetic data, which allows controlled injections of anomalies, with
production-inspired data that captures realistic variability. Synthetic experiments begin by simulating
a baseline revenue process. Buckets indexed by 𝑡 are assigned features drawn from distributions that
mimic segment attributes such as geography, device type, or campaign identifiers. A baseline mapping
from features to reference revenue 𝑅∗

𝑡 is specified using a linear or piecewise linear function with noise.
Multiple telemetry streams are then derived from the same latent process, each with its own measurement
noise, sampling, and potential biases [53]. For example, one stream might undercount certain events in
specific segments, while another might exhibit delayed logging. These synthetic telemetry streams feed
simulated data agents, which compute anomaly scores based on deviations from their learned baselines.

Anomalies representing revenue leakage are injected by perturbing the mapping from features to
observed revenue 𝑅𝑡 or by introducing discrepancies between telemetry streams. For instance, a system-
atic undercounting of impressions in a particular region may reduce 𝑅𝑡 relative to 𝑅∗

𝑡 without affecting
some telemetry streams. A misconfiguration in attribution logic may lead to missing conversions for
subsets of campaigns [54]. These perturbations are configured to span a range of magnitudes and dura-
tions, from short-term spikes to longer-running drifts. The ground truth leakage 𝐸𝑡 = 𝑅∗

𝑡 −𝑅𝑡 is recorded
for evaluation but not exposed to agents or ensembles.

Data agents in the synthetic setup are implemented using models consistent with their intended capa-
bilities. One agent may track aggregate ratios and apply univariate control limits, producing anomaly
scores when ratios deviate beyond limits. Another may maintain multivariate Gaussian models of metrics
per segment [55]. A third may employ time-series forecasting for daily revenue and compute prediction
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errors. Each agent only sees its own telemetry stream and does not have direct access to the latent refer-
ence revenue. Calibration functions 𝑐𝑘 are fitted using pre-anomaly data windows, ensuring that agent
scores under baseline behavior follow approximately stable distributions.

The collaborative ensemble model is trained using a subset of buckets labeled with estimated
recovered revenue. In synthetic experiments, these labels can be derived directly from ground truth
leakage, possibly with added noise to mimic imperfect investigations [56]. The labeled subset is sam-
pled according to realistic investigation policies, for example by selecting high-scoring buckets under
non-collaborative detectors or random sampling. This sampling process introduces selection bias, since
labels are more likely to be available for extreme anomalies. Training procedures that ignore this bias
may overestimate performance on such buckets. To study robustness, experiments can vary the labeling
policy and examine how ensemble performance changes [57].

Performance metrics for collaborative anomaly detection in this context must capture both detection
quality and revenue relevance. Classical metrics such as precision, recall, and area under the receiver
operating characteristic curve can be computed with respect to thresholds on estimated leakage. How-
ever, because investigation capacity is limited, more relevant metrics focus on top segments. One such
metric is precision at 𝐾 , defined as the fraction of the top 𝐾 selected buckets that correspond to true
revenue-affecting anomalies [58]. Another is cumulative recovered revenue at𝐾 , computed as the sum of
ground truth leakage over the top 𝐾 selections. Comparing these metrics between collaborative ensem-
bles, individual agents, and monolithic models trained on merged telemetry provides insight into the
benefits and trade-offs of the collaborative architecture.

An important aspect of analysis concerns robustness to missing or degraded agents. In practice, some
telemetry streams may fail or become unavailable due to system outages or schema changes. Experi-
ments can simulate such scenarios by dropping one or more agents for segments of the data and observing
the impact on ensemble performance [59]. The linear ensemble formulation naturally handles missing
inputs by treating absent agent scores as zeros or by masking. Evaluation can quantify how gracefully
performance degrades when key agents are removed and whether the ensemble redistributes weight
to remaining agents during retraining. Sensitivity to individual agents can be analyzed by computing
marginal contributions of each agent to ensemble scores across buckets.

Another focus of experimental analysis is calibration of ensemble scores with respect to revenue
outcomes [60]. Well-calibrated scores should align with empirical probabilities or expected magni-
tudes of leakage. Calibration can be evaluated by grouping buckets into bins by predicted score and
comparing average ground truth leakage within each bin. Deviations indicate overconfidence or under-
confidence. Linear calibration layers or isotonic regression can be applied on top of ensemble scores to
improve alignment [61]. In dynamic environments, calibration may drift over time, necessitating peri-
odic adjustment. Experiments that simulate regime shifts, such as changes in traffic patterns or product
configuration, can reveal how quickly the ensemble and calibration mechanisms adapt.

Production-inspired experiments rely on anonymized logs from operational systems, where true
revenue leakage is only partially observed. In such datasets, labels from historical investigations pro-
vide a sparse and biased sample. To evaluate detection quality on unlabelled segments, proxy signals
can be employed [62]. For example, anomalies confirmed by downstream reconciliation processes or
adjustments in billing records can be used as partial ground truth. While these proxies do not capture
all leakage, they offer additional validation channels. Analysis on these datasets emphasizes relative
comparisons between collaborative ensembles and baselines rather than absolute measures of missed
leakage.

Throughout experimental analysis, it is useful to investigate interpretability [63]. Linear models facil-
itate inspection of learned weights on agent scores and features. By examining the magnitude and sign
of weights associated with each agent, analysts can infer which agents contribute most to detecting cer-
tain classes of anomalies. Combining this with case studies of specific incidents allows teams to reason
about why particular buckets were prioritized for investigation. Interpretability can also highlight mis-
alignments, such as an agent whose scores systematically downweight segments that historically yielded
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meaningful recovery [64]. Identifying such patterns can inform adjustments to agent models or data
collection processes.

In summary, the experimental design aims to characterise how ensembles of heterogeneous data
agents behave in detecting revenue-related anomalies, with emphasis on revenue-oriented metrics,
robustness to missing agents, calibration over time, and interpretability of learned weights and decision
policies. While details of implementation and numerical results depend on the specific environment, the
outlined framework provides a basis for systematic evaluation.

7. Conclusion
This paper has examined collaborative anomaly detection for revenue recovery in environments where
multiple heterogeneous data agents monitor different aspects of revenue-generating processes. Starting
from a formulation that links latent reference revenue, observed revenue, and leakage, the discussion
introduced data agents as components that transform local telemetry into calibrated anomaly scores and
auxiliary descriptors [65]. A linear ensemble model was proposed to combine these agent outputs into
revenue-oriented anomaly scores, using partially labeled historical recovery outcomes as supervision.
The ensemble design accounted for heterogeneity in agent reliability and potential structure in an agent
graph through regularization.

To connect detection to operational action, a revenue recovery modeling layer was introduced. This
layer mapped ensemble scores and additional features into estimates of expected recovered revenue and
posed the investigation selection problem as a constrained optimization [66]. Linear models for expected
recovery and linear capacity constraints allowed the selection problem to be expressed as a variant of
the knapsack problem, with possible extensions for diversity and risk management. Incremental updates
based on realized recoveries provided a mechanism for refining both predictive models and decision
policies over time.

The architectural perspective emphasized decoupling of local detection, collaborative ensembling,
and decision optimization. Agents retained autonomy over their internal models and feature engineering,
while a common interface for anomaly scores and descriptors enabled shared learning about revenue
impacts [67]. The ensemble, being linear in its parameters, supported scalable training and online
adaptation as new labels became available. This structure also facilitated interpretability by allowing
inspection of learned weights and their evolution.

Experimental considerations highlighted the importance of combining synthetic and production-
inspired data to evaluate such systems. Synthetic experiments can systematically vary anomaly types,
magnitudes, and agent failures to probe robustness, while production-like data captures real-world vari-
ability and partial labeling. Revenue-oriented metrics focusing on top-ranked anomalies, cumulative
recovered amounts, and calibration provide a more direct assessment of utility for revenue protection
than generic detection metrics alone [68]. Analysis of sensitivity to missing agents and the stability of
calibration under regime shifts further informs deployment decisions.

Several limitations and potential extensions arise from this formulation. The linear models discussed
provide a tractable starting point but may not fully capture complex interactions among agent signals
and contextual features. More expressive models, possibly combined with constraints or regularization
encouraging interpretability, could be explored [69]. Label sparsity and selection bias remain challeng-
ing, suggesting the value of methods that can leverage weak supervision, semi-supervised learning, or
causal modeling to better relate observed anomalies to revenue outcomes. Finally, integrating such sys-
tems into organizational processes requires careful consideration of feedback loops, governance, and
communication between technical and business stakeholders.

Despite these limitations, the framework presented offers a structured way to think about collaborative
anomaly detection for revenue recovery. By treating anomaly detection as a coordinated activity among
heterogeneous data agents and explicitly linking detection to revenue impact and operational constraints,
it provides a basis for designing systems that align monitoring capabilities with financial objectives in
complex data environments. and organizations [70].
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